Protecting Elections by Recounting Ballots

Edith Elkind ${ }^{1}$, Jiarui Gan ${ }^{1}$, Svetlana Obraztsova², Zinovi Rabinovich ${ }^{2}$, Alexandros A. Voudouris ${ }^{1}$ ${ }^{1}$ University of Oxford, ${ }^{2}$ Nanyang Technological University

Election \& Election Frau

- Hack voting machine, manipulate demography, bribe voters, burn down polling station, incorrectly count ballots...
- Counteract incorrect counting:
- Send observers to polling stations [Yin et al. 2016 \& 2018; Li et al 2017; Chen et al 2018]
- Alternatively, Recount ballots!

Second mover advantage

In the 2008 United States Senate election in Minnesota the Democratic candidate Al Franken won the seat after a recount revealed that 953 absentee ballots were wrongly rejected.

How to optimally recount using limited recounting resources?

How to optimally manipulate, given that defender will recount optimally?

A Complete View of Complexity

- Problem definitions

PV/PD-RECounting

Given a vote profile v , a distorted vote profile \boldsymbol{v}, a candidate $a \in C$, a budget B_{D}, district weights w_{i}, can defender recount B_{D} districts to get a elected?

PV/PD-MANipulation

Given a vote profile \boldsymbol{v}, a preferred candidate $p \in C$, a budget B_{A}, district weights w_{i} and number γ_{i} of votes that can be changed, can attacker manipulate B_{A} districts to get p elected (assuming defender will recount optimally)?

- Result overview

	PV	PD unweighted	weighted
Rec	$\begin{aligned} & \text { NP-c (3) } \\ & \text { NP-c © } \\ & O\left(n^{m+2}\right)(\text { by DP) } \end{aligned}$	P (reduct. to nonuniform bribery)	$\begin{aligned} & \text { NP-c (3) } \\ & \text { NP-c © } \\ & O\left(n^{m+2}\right)(\text { by DP) } \end{aligned}$
Man	NP-hard (3)+(0)+@ NP-hard (1) + (0)+@	NP-c (1)	$\begin{aligned} & \Sigma_{2}^{\mathrm{P}}-\mathrm{c}(3) \\ & \text { NP-h (1)+(0) } \end{aligned}$

Results with (()) holds even when the input vote profile is given in unary (binary by default); with (3) hold even when there are only three candidates; with (0) hold even when the defender's budget is zero; with $@$ hold even when the attacker can change as many votes as she wants in every district. DP means Dynamic Programming.

A Stackelberg Game Model

- A set C of candidates, n voters in k disjoint districts D_{1}, \ldots, D_{k}
- Two voting rules considered
- Plurality over Voters (PV), $a^{*}=\underset{a \in C}{\operatorname{argmax}} \sum_{i \in[k]} v_{i a}$
- Plurality over Districts (PD), weight w_{i} for each D_{i}

$$
\mathscr{S} a^{*}=\underset{a \in C}{\operatorname{argmax}} \sum_{i \in[k]} w_{i} \cdot \mathbb{1}_{a=a_{i}^{*}} \text {, where } a_{i}^{*}=\underset{a \in C}{\operatorname{argmax}} v_{i a}
$$

- Tie-breaking rule: $>$

Example

- $C=\{a, b, p\}$, tie breaking: $p>a>b$
- 23 voters in 5 districts
- $B_{D}=1, B_{A}=2, \gamma_{i}=n_{i}$
- $w_{i}=\left(n_{i}\right)^{2}$

No winning manip. under $\mathbf{P V}$
\sim Winning under PD: $\left\{D_{1}, D_{2}\right\}$

	a^{Ω}	b	p^{\curvearrowleft}
D_{1}	7	0	0
$D_{\mathbf{2}}$	7	0	0
$D_{\mathbf{3}}$	0	3	0
$D_{\mathbf{4}}$	0	3	0
$D_{\mathbf{5}}$	0	3	0
$\mathrm{SW}^{\mathrm{PV}}$	14	9	0
$\mathrm{SW}^{\mathrm{PD}}$	98	27	0

Regular Manipulation (RM)

A manipulation strategy is said to be regular if:

- PV: votes are transferred only from other candidates to p (the attacker's preferred candidate)
- PD: no candidate other than p is made the winner in manipulated districts

No!

- Is RM w.l.o.g.? (Why transfer votes to others?)

Example: when no optimal manipulation is RM

- $C=\{a, b, p\}$, tie breaking: $p>a>b$
- $B_{D}=1, B_{A}=2, \gamma_{i}=n_{i}$
- $w_{i}=n_{i}$

RM cannot win: $\operatorname{SW}(a) \geq 8$ and
$\mathrm{SW}(p) \leq 7$ after recounting
\sim A winning non-RM:
$D_{1}: p \rightarrow b$, and $D_{2}: a \rightarrow p$

	$a^{a 8}$	b	$p^{r_{3}}$
D_{1}	0	$0 \longleftarrow 6$	
D_{2}	3	0	\boldsymbol{T}^{0}
D_{3}, \ldots, D_{8}	1	0	0
D_{9}, \ldots, D_{12}	0	1	0
$\mathrm{SW}^{\mathrm{PV} / \mathrm{PD}}$	9	4	6

- RM complexity results

	PV-RM	PD-RM
REC	Inapprox. in $1 / 2+\epsilon$ unless $P=$ NP (3), but $1 / 2$-approx. via Greedy	
MAN	NP-c (3) NP-c (1)	P

