Protecting Elections by Recounting Ballots

Edith Elkind¹, Jiarui Gan¹, Svetlana Obraztsova², Zinovi Rabinovich², Alexandros A. Voudouris¹

¹University of Oxford, ²Nanyang Technological University

Election & Election Frau

- Hack voting machine, manipulate demography, bribe voters, burn down polling station, **incorrectly count ballots**...
- Counteract incorrect counting:
- Send observers to polling stations [Yin et al. 2016 & 2018;
 - Li et al 2017; Chen et al 2018]
- <u>Alternatively</u>, **Recount ballots!** Second mover advantage

In the 2008 United States Senate election in Minnesota the Democratic candidate Al Franken won the seat after a recount revealed that 953 absentee ballots were wrongly rejected.

In the 2004 race for governor in Washington the Democratic candidate Gregoire was declared the winner after

A Stackelberg Game Model

- A set C of candidates, n voters in k disjoint districts D_1, \ldots, D_k
- Two voting rules considered
 - Plurality over Voters (PV), $\sum_{a \in C} a^* = \underset{a \in C}{\operatorname{argmax}} \sum_{i \in [k]} v_{ia}$
 - **Plurality over Districts (PD)**, weight *w_i* for each *D_i*

$$\sum_{a \in C} a^* = \underset{i \in [k]}{\operatorname{argmax}} \sum_{i \in [k]} w_i \cdot \mathbb{1}_{a=a_i^*}, \text{ where } a_i^* = \underset{a \in C}{\operatorname{argmax}} v_{ia}$$

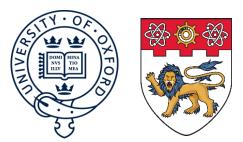
Tie-breaking rule: >

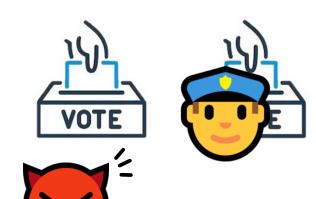
Attacker 😈 (leader) —

- Can manipulate B_A districts
- Goal: make a favorite candidate $p \in C$ win
- Knows that the defender will recount optimally
- Defender 😇 (follower) —
- Observes manipulated districts
- Can recount $B_D < B_A$ districts
- Goal: maximize social welfare: VS

 $SW^{PV}(a) = \sum_{i \in [k]} v_{ia}$

 $SW^{PD}(a) = \sum_{i \in [k]} w_i \cdot \mathbb{1}_{a=a_i^*}$





three consecutive recounts.

How to optimally recount using **limited** recounting resources?

How to optimally manipulate, given that defender will recount optimally?

A Complete View of Complexity

Problem definitions

PV/PD-Recounting

Given a vote profile v, a distorted vote profile v, a candidate $a \in C$, a budget B_D , district weights w_i , can defender recount B_D districts to get *a* elected?

PV/PD-Manipulation

Given a vote profile v, a preferred candidate $p \in C$, a budget B_A , district weights w_i and number γ_i of votes that can be changed, can attacker manipulate B_A districts to get p elected (assuming defender will recount optimally)?

Result overview

xample		

- $C = \{a, b, p\}$, tie breaking: p > a > b
- 23 voters in 5 districts
- $B_D = 1, B_A = 2, \gamma_i = n_i$
- $w_i = (n_i)^2$
 - No winning manip. under **PV**
 - Winning under **PD**: $\{D_1, D_2\}$

	a⊻	b	p^{\bigstar}
<i>D</i> ₁	7	0	0
D 2	7	0	0
D 3	0	3	0
D_4	0	3	0
D_{5}	0	3	0
SW ^{PV}	14	9	0
SW ^{PD}	98	27	0

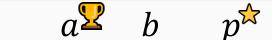
Regular Manipulation (RM)

A manipulation strategy is said to be *regular* if:

- **PV**: votes are transferred only **from other candidates to** *p* (the \bullet attacker's preferred candidate)
- **PD**: no candidate other than *p* is made the winner in manipulated districts
- Is RM w.l.o.g.? (Why transfer votes to others?)

Example: when no optimal manipulation is RM

• $C = \{a, b, p\}$, tie breaking: p > a > b



 $0 \leftarrow 6$

6

 D_1

*D*₂

D₃, ..., D₈

 D_9, \dots, D_{12}

SW^{PV/PD}

No!

	PV	PD	
		unweighted	weighted
REC	NP-c $③$ NP-c $①$ $O(n^{m+2})$ (by DP)	P (reduct. to non- uniform bribery)	NP-c $③$ NP-c $④$ $O(n^{m+2})$ (by DP)
Man	NP-hard ③+@+∞ NP-hard <mark>0</mark> +@+∞	NP-c 🛈	Σ_2^P -c 3 NP-h 0+0

Results with () holds even when the input vote profile is given in unary (binary by default); with (3) hold even when there are only three candidates; with \bigcirc hold even when the defender's budget is zero; with Monopole is a straight of the straight of t in every district. DP means Dynamic Programming.

- $B_D = 1, B_A = 2, \gamma_i = n_i$
- $w_i = n_i$

REC

MAN

- RM cannot win: $SW(a) \ge 8$ and $SW(p) \le 7$ after recounting
- A winning non-RM: $D_1: p \rightarrow b$, and $D_2: a \rightarrow p$

•	RM	comp	lexity	results
---	----	------	--------	---------

complexity resul	lts
PV-RM	PD-RM
Inapprox. in ½ +	ε unless P=NP ③, but ½-approx. via Greedy
NP-c ③ NP-c ①	Р

Presented at IJCAI'19, Macao

9