Manipulating a Learning Defender and Ways to Counteract

Jiarui Gan¹, Qingyu Guo², Long Tran-Thanh³, Bo An², Michael Wooldridge¹

¹University of Oxford, ²Nanyang Technological University, ³University of Southampton

1 Learning Optimal Commitment

Stackelberg Security Game (SSG)

- **Defender**: allocate *m* **resources** to protect *n* **targets** \rightarrow coverage $\mathbf{c} = (c_1, \dots, c_n), c_i \in [0,1], \sum_i c_i \leq m$
- **Attacker**: select a target $i \in T = \{1, ..., n\}$ to attack
- Utilities: $u^{d}(\mathbf{c}, i) = c_{i} \cdot r_{i}^{d} + (1 c_{i}) \cdot p_{i}^{d}$ $u^{a}(\mathbf{c},i) = (1-c_{i}) \cdot r_{i}^{a} + c_{i} \cdot p_{i}^{a}$

Strong Stackelberg equilibrium (SSE):

- Optimal defender commitment assuming best attacker response
- $(\hat{\mathbf{c}}, \hat{\imath}) = \operatorname{argmax}_{\mathbf{c}, i \in BR(\mathbf{c})} u^d(\mathbf{c}, i)$, where $BR(\mathbf{c}) \coloneqq \operatorname{argmax} u^a(\mathbf{c}, i)$

When attacker type (payoffs) is uncertain...

Learn optimal commitment by observing attacker best responses [Letchford et al., 2009; Blum et al., 2014; Haghtalab et al., 2016; Roth et al., 2016; Peng et al., 2019]

4 0	01	4 0	01	

2 Manipulating a Learning Defender

When attacker is **truthful**

	Туре А	Туре В
Optimal commit:	(0.75, 0.25)	(0.5, 0.5)
Induced best response:	1 ^a	1 ^a
Defender utility:	0.5	0
Attacker utility:	0	0

When attacker is **untruthful**...

- *Type-A* attacker: manipulate by best responding like Type B \bullet
- Defender plays opt commit against *Type B*, obtaining utility 0 ullet

THEOREM. When attacker can report an arbitrary type, it is always optimal to report the **zero-sum** type. Defender learns the **maximin** strategy as her optimal commitment as a result.

Example: A defender (row player) wants to defend two areas 1 and 2, which a *poacher* (*column player*) wants to attack. The poacher may be of Types A or B as his payoffs depend on animal prices on the black market, which fluctuate and are held private by the poacher.

To learn attacker type, play (0.6, 0.4):

• If best response 1^a, *Type A*; o.w., *Type B*

(More generally: learn optimal commitment in a continuous type space [Blum et al., 2014; Peng et al., 2019])

Key assumption: *truthful* attacker responses. *What if not*?

Computing the Optimal Policy

A polynomial-time algorithm for a *finite* set Θ of attacker types

Algorithm 1: Decide if there exists a policy π such that $EoP(\pi) \ge \xi$

1. For each $\theta \in \Theta$, compute an SSE $(\hat{\mathbf{c}}^{\theta}, \hat{\imath}^{\theta})$ on type θ . Let $\hat{u}(\theta) = u^{d}(\hat{\mathbf{c}}^{\theta}, \hat{\imath}^{\theta})$.

2. Sort attacker types in Θ by $\hat{u}(\theta)$, so that $\hat{u}(\theta_1) \ge \hat{u}(\theta_2) \ge \cdots \ge \hat{u}(\theta_{\lambda}), \lambda = |\Theta|$

Handling Attacker Manipulation 3

A policy-based playbook

- **Stage 1**: **Defender** commits to **policy** $\pi: \Theta \to \mathcal{C} \times T$, specifying a strategy $\pi(\mathbf{c})$ to play for each reported/learned attacker type $\theta \in$ Θ , and a response $t \in BR_{\theta}(\mathbf{c})$ to induce the attacker to take.
- **Stage 2**: **Attacker** (of true type θ) choose optimally a type $\beta =$ argmax $u^{a}(\pi(\theta'))$ and behaves like this type, i.e., **report** type *β*.
- **Stage 3**: Outcome $(\mathbf{c}, t) = \pi(\beta)$ realized: defender plays **c** and attacker best responds $t \in BR_{\beta}(\mathbf{c})$, obtaining $u^{d}(\mathbf{c}, t)$ and $u^{a}_{\theta}(\mathbf{c}, t)$.

Example:

- Play $\mathbf{c}^A = \left(\frac{3}{4}, \frac{1}{4}\right)$ and induce $1^a \in BR_A(\mathbf{c}^A)$ if att. behaves like *A*;
- Play $\mathbf{c}^B = \left(\frac{1}{2}, \frac{1}{2}\right)$ and induce $2^a \in BR_B(\mathbf{c}^B)$ if att. behaves like *B*.

Type-A attacker no longer has incentive to misreport *Type B*!

Optimal policy to commit to? What quality measure?

Worst-case defender utility? Unable to distinguish quality of many polices, however (see Proposition 5 in paper).

- Efficiency of a Policy (EoP): an alternative measure

1

3. For each
$$\ell = 1, ..., \lambda$$
, let $\pi(\theta_{\ell}) = (\mathbf{z}, t)$, where $z_i = \min\{\hat{c}_i^{\theta_{\ell}}, h_i\}, t = BR_{\theta_{\ell}}(\mathbf{h})$,
and $h_i = \max\left\{0, \frac{\xi \cdot \hat{u}(\theta_{\ell}) - p_i^{d}}{r_i^{d} - p_i^{d}}, \max_{\theta \in \{\theta_1, ..., \theta_{\ell} - 1\}} \frac{u_{\theta}^{a}(\pi(\theta)) - r_i^{\theta}}{p_i^{\theta} - r_i^{\theta}}\right\}$.

4. If $EoP(\pi) \ge \xi$, return π as a satisfying policy; o.w., claim no such policy exists.

THEOREM. In polynomial time, Algorithm 1 either outputs a policy π with EoP(π) $\geq \xi$, or decides correctly that no such policy exists. The policy generated is *incentive compatible* (IC).

QR policy for an *infinite* or *unknown* Θ

• **QR policy:** when θ is reported, play the SSE strategy $\hat{\mathbf{c}}^{\theta}$ against θ and induce attacker best response in a QR manner, with

probability
$$\sigma(i) = \frac{e^{\varphi \cdot u^d(\hat{\mathbf{c}}^{\theta}, i)}}{\sum_{j \in BR_{\theta}(\hat{\mathbf{c}}^{\theta})} e^{\varphi \cdot u^d(\hat{\mathbf{c}}^{\theta}, j)}}$$
 for each $i \in BR_{\theta}(\hat{\mathbf{c}}^{\theta})$.

 $EoP(\pi) = \min_{\theta \in \Theta} \frac{u^{d} \text{ when } \theta \text{ reports optimall against } \pi}{u^{d} \text{ when } \theta \text{ reports truthfully}}$

• Higher EoP, less utility loss due to manip. $EoP(\pi) \in [0,1]$.

Empirical Evaluation

EoP comparison of different policies. In (a), other parameters are set to $\lambda = 100$, m = 10, and n = 50; and in (b), m = n/5, $\rho = 0.5$, and $\lambda =$ 100. Figs. (c) and (d) repeat (a) and (b), respectively, with the difference that the zero-sum attacker type is always included in Θ .

Presented at NeurIPS'19, Vancouver