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Abstract

Stackelberg equilibria, as functions of the players’ payoffs, can inversely reveal informa-
tion about the players’ incentives. In this paper, we study to what extent one can learn
about the leader’s incentives by actively querying the leader’s optimal commitments against
strategically designed followers. We show that, by using polynomially many queries and
operations, one can learn a payoff function that is strategically equivalent to the leader’s, in
the sense that: 1) it preserves the leader’s preference over almost all strategy profiles; and
2) it preserves the set of all possible (strong) Stackelberg equilibria the leader may engage
in, considering all possible follower types. As an application, we show that the information
acquired by our algorithm is sufficient for a follower to induce the best possible Stackelberg
equilibrium by imitating a different follower type. To the best of our knowledge, we are the
first to demonstrate that this is possible without knowing the leader’s payoffs beforehand.
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1 Introduction

Strategy commitment naturally arises in various scenarios due to asymmetric timing, commit-
ment advantages, or hierarchical structures. In a Stackelberg equilibrium, the leader, commits
to a strategy that maximizes her payoff conditioned on the follower’s best-responding behav-
ior [von Stackelberg, 1934, Von Stengel and Zamir, 2010]. Over the past decade, Stackelberg
games and the Stackelberg equilibrium have been adopted in applications across various domains
to obtain optimal strategies to commit to, including security [Tambe, 2011], exam design [Li
and Conitzer, 2017], transportation management [Staňková and Boudewijn, 2015, Böhnlein
et al., 2023], multi-agent learning [Yang et al., 2023], as well as persuasion and contract de-
sign [Dughmi, 2017, Dütting et al., 2021].

Despite its rationality, optimal commitment exposes the leader’s incentives, leaving a pas-
sage for interested parties to probe into the leader’s incentives—and potentially exploit this
information—from samples of the leader’s optimal commitments. Especially noteworthy are sce-
narios where a learner can obtain various samples of the leader’s optimal commitments against
different types of followers (i.e., followers with different payoffs). This arises, for example, in
web platforms such as recommender systems or e-commerce websites, where the platform (the
leader) provides customized recommendations or services based on the user’s (the follower’s)
profile. The platform may interact simultaneously with millions of users. A learner (e.g., a
competing platform or a data aggregation company) can create multiple accounts with strategi-
cally crafted user profiles to acquire the platform’s optimal commitments against different user
types. Similarly, regulatory organizations may also want to understand and assess commitment
optimizers’ motives to ensure that their incentives align with fairness, transparency, or other
regulatory objectives [Meßmer and Degeling, 2023, Koshiyama et al., 2024]. This leads to the
following inverse game theory and active learning problem we study in this paper:

What can we learn about the leader’s incentive based on actively obtained samples of
optimal commitments, especially in sample-efficient and computationally tractable
ways?

We consider this problem in bi-matrix games and adopt a query model. In the model, the
learner can query an equilibrium oracle to obtain the leader’s optimal commitment against any
given follower type (i.e., a payoff function or matrix of the follower). The oracle abstracts the
process where the learner creates a new follower type to interact with the leader. The follower
reports their type to the leader, and the leader commits optimally w.r.t. the reported payoffs.
The type-reporting step can either be direct, where the follower explicitly submits their payoffs,
e.g., advertisers specifying targeting preferences in online ad platforms or job seekers uploading
resumes to hiring agencies. Alternatively, it can be realized indirectly via a learning process
[Letchford et al., 2009, Blum et al., 2014a, Haghtalab et al., 2016, Peng et al., 2019]: e.g., online
platforms learn customized recommendations by interacting with users.1

1.1 Main Result

Indeed, to recover the exact payoffs of the leader through such a query model is hope in vain
because of cases that are indistinguishable due to the limited information exposure of the oracle.
Hence, we calibrate our objective according to several types of strategic equivalences. In general,
we would like to recover the leader’s preference order over as many strategy profiles as possible
and to learn sufficiently about the leader’s commitment behavior in the Stackelberg scenario.

Our main result (Theorem 5.4) is an efficient approach which, by interacting with the equi-
librium oracle, learns a function ũL equivalent to the leader’s original payoff uL in the following
senses.

1Such learning processes can converge rapidly due to intense user interactions or the use of heuristics [Cov-
ington et al., 2016].
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• First, ũL preserves the leader’s preference over (mixed) strategy profiles in which the fol-
lower’s actions involved do not obviously dominate each other w.r.t. the leader’s payoff
(in-component equivalence). The notion of obvious dominance is a stronger form of domi-
nance than standard dominance notions, making it unlikely to arise frequently in practice.
In such cases, ũL preserves the leader’s preference over all strategy profiles.

• Second, ũL preserves the leader’s preference over strategy profiles where the follower’s
responses are pure and outside a “hard set” (cross-component), regardless of obvious
dominance. Notably, restricting the follower’s responses to pure strategies is common in
studies of the (strong) Stackelberg equilibrium, given that a pure best response always
exists. The leader’s commitments reveal little information about actions in the hard set
as the leader’s preference over these actions does not influence the equilibria of the game.
Therefore, what we recover matches the best possible in the model considered.

• Indeed, the actions in the hard set are insignificant for determining possible equilibria of
the game. This makes ũL inducibility-equivalent to uL: it preserves the set of inducible
Stackelberg equilibria. An equilibrium is inducible if it arises for some follower type. Hence,
the set can be viewed as a “footprint” of the leader’s commitment behavior, consisting of all
possible equilibria the leader may engage in. Using ũL, we can determine the inducibility
of every strategy profile under the leader’s actual payoffs uL and, for the inducible ones,
efficiently compute a follower type to induce them.

The inducibility-equivalence between ũL and uL, is closely related to the following equilib-
rium inducing problem: Suppose a follower can hide their true type, say uF , and make the
leader believe that they are of some other type ũF . How to find a ũF so that the Stackelberg
equilibrium s of game (uL, ũF ) (which the leader believes they are playing) has the maximum
possible uF (s)?

The problem is also phrased as payoff manipulation or imitative deception in Stackelberg
games [Gan et al., 2019b,a, Nguyen and Xu, 2019, Birmpas et al., 2021, Chen et al., 2025], where
a follower imitates the best-responding behavior of another type to maneuver the game into a
different equilibrium. Despite the growing interest in this problem, it remains unknown whether
such manipulations are possible when the manipulator does not have any information about
the leader’s payoffs beforehand but has to learn through interactions. Holding the leader’s
incentive confidential is, therefore, the last potential barrier against such manipulations. As
an application of our result, optimal manipulation is polynomially learnable. Therefore, the
information barrier may be unreliable due to the inevitable information exposure via optimal
commitments. Our results imply that due caution is necessary when one intends to utilize the
power of optimal commitment (e.g., providing customized service based on user profiles).

1.2 Technique Overview

Since the leader’s payoff function is linear in their mixed strategy for each follower action, it can
be represented as a finite set of linear functions {uL(·, i)}ni=1, for n follower actions. To learn
a “surrogate” function that preserves the value order of uL, the task is twofold: 1) learning
the gradient direction of each function, and 2) learning their relative growth rates and offsets.
A follower type partitions the convex function domain (i.e., the leader’s strategy space) into a
collection of polytopal subsets {Si}ni=1 (best response regions), each associated with a follower
action. This results in a piecewise linear function f , such that f(x) = uL(x, j) for x ∈ Sj ,
which effectively maps each commitment x to the utility it yields for the leader along with the
follower’s best response to x.

While f is not directly observable, Stackelberg equilibria correspond to its maxima. Hence,
the core difficulty lies in constructing best response (BR) partitions, so that strategy profiles
carrying useful information about uL are exposed as Stackelberg equilibria. (We do not have
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direct access to utilities of strategy profiles.) Along this line, our approach features the following
key novelties.

• First, to propagate the pairwise information between actions, we introduce non-dominance
graph (Definition 5). This graph allows us to derive relative information between any two
actions connected by a path, propagating the pairwise information across an entire con-
nected component. Consequently, we achieve a strong in-component equivalence, which
helps us to understand the maximum extent of information that can be learned in our
model.

• Second, to infer the gradient of uL(·, i), we need to identify multiple strategies yielding
the same uL value. The normal vector of the hyperplane defined by these points gives
the gradient. To achieve this, we design a parametrized type, where each parameter is
responsible for identifying one strategy (see Fig. 3). Our design ensures several structural
properties, so that we can easily tune the parameters to expose multiple strategies simul-
taneously through equilibria (Section 6.1). Similar techniques are introduced when we
perform nested binary search to learn relative parameters between two actions. There,
simultaneous control of the actions’ best response regions is required and achieved via a
parameterized type (Appendix D.3).

• Third, to expose certain follower actions of interest through Stackelberg equilibria, we
need to suppress the leader’s maximum attainable utilities in other best response regions.
To introduce a general approach to handling this, we introduce the concept cover (Def-
inition 7), as a follower type that reduces the leader’s utility on their maximin set to
below the maximin value. This allows more strategy profiles associated with the actions
of interest to become equilibria. We establish a necessary and sufficient condition for the
existence of a cover (Lemma 6.3).

1.3 Related Work

Inverse Game Theory and Active Learning The problem we study is both an inverse
game theory and active learning problem. Inverse game theory aims to recover the underlying
game parameters from observed equilibrium behaviors. These tasks are often accomplished via
active learning approaches, where equilibrium samples are obtained through interactions. A
line of work in Stackelberg games explored how a leader can learn the follower’s incentives by
observing their responses and proposed active learning algorithms [Letchford et al., 2009, Balcan
et al., 2015, Haghtalab et al., 2016, Blum et al., 2014b, Roth et al., 2016, Peng et al., 2019, Wu
et al., 2022]. Specifically, Peng et al. [2019] analyzed the sample complexity of this approach.
Haghtalab et al. [2016] and Wu et al. [2022] considered followers with bounded rationality under
the quantal response model. Beyond this, Xu et al. [2023] studied how to learn players’ coalition
structure by designing games. The equilibrium oracle considered is similar to ours, requiring a
candidate equilibrium to be provided as part of the input.

Imitative Deception in Stackelberg Games Motivated in part by the above work on
learning to commit, the imitative deception problem explores how learning-based commitment
strategies can be manipulated. Gan et al. [2019b] introduced this term and examined counter-
measures, proving them NP-hard to approximate. In Stackelberg security games, Gan et al.
[2019a] found that followers often benefit by steering the game into a zero-sum equilibrium,
reducing the leader to their maximin payoff. While this does not hold in general bimatrix
Stackelberg games, Birmpas et al. [2021] established a broader connection between payoff ma-
nipulations and the leader’s maximin payoff. Nguyen and Xu [2019] studied similar manip-
ulations with bounded payoff reporting. More recently, Chen et al. [2025] extended this to
extensive-form games, while Cen et al. [2024] examined platform-user Stackelberg interactions.
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Repeated Games and Stackelberg Equilibria In our model, the learner repeatedly queries
the leader’s optimal commitments. This may appear similar to a repeated Stackelberg game,
a topic of growing interest. Prior work has studied such games where both players maximize
long-term rewards [Haghtalab et al., 2022, Arunachaleswaran et al., 2024], as well as interac-
tions with patient followers in auctions [Amin et al., 2013, 2014, Mohri and Medina, 2014, Liu
et al., 2018] and principal-agent problems [Zhang and Conitzer, 2021a, Gan et al., 2022, 2023].
Beyond Stackelberg settings, repeated simultaneous-move games with information asymmetry
have also been explored [Sorin, 1983, Aumann et al., 1995]. Connections between repeated
games and Stackelberg equilibrium have been explored: Deng et al. [2019] and Mansour et al.
[2022] compared optimizers’ guaranteed values against no-regret learners to Stackelberg payoffs;
Zrnic et al. [2021] showed that slower learners can attain Stackelberg values in strategic clas-
sification; and Ananthakrishnan et al. [2024] argued that players with information advantages
can achieve Stackelberg values in meta-games with machine strategies. Unlike these works, our
model assumes repeated Stackelberg play but differs fundamentally: the leader remains unaware
that the followers are controlled by the same learner, treating each round as a new game against
an independent follower.

Manipulation in Other Strategic Settings Kolumbus and Nisan [2022b,a] studied the
Nash equilibrium of the meta-game where multiple players attempt to manipulate simultane-
ously. Earlier, Kash and Parkes [2010] examined imitative deception (termed “impersonation”
in their work) in auction design, focusing on designing mechanisms resistant to such decep-
tion rather than learning optimal player types to imitate. More broadly, our work relates to
private information manipulation and data robustness in learning-driven environments, which
have raised growing interest in game theory and machine learning. The strategic misreporting
of private preferences has been widely studied across various settings [e.g., Amanatidis et al.,
2021, Tang and Zeng, 2018, Deng et al., 2020, Chen et al., 2022, Cheng et al., 2022, Wu et al.,
2023]. Countermeasures have been explored through mechanism design, robust learning, and
differential privacy [e.g., Hardt et al., 2016, Gan et al., 2019b, Zhang and Conitzer, 2021b, Wang
et al., 2021, Bei et al., 2022, Haghtalab et al., 2022].

Conceptual Leader in Meta-Games Hierarchically, the learner in our model can be viewed
as a “conceptual leader” in a meta-game: the learner first commits to a follower type; then the
leader best responds by playing a Stackelberg equilibrium based on their true payoffs and the
reported follower type. This perspective aligns with research on imitative deception [Gan et al.,
2019b,a, Nguyen and Xu, 2019, Birmpas et al., 2021, Chen et al., 2025] and strategizing against
learning players [Braverman et al., 2018, Deng et al., 2019, Mansour et al., 2022, Lin and
Chen, 2025], where the player who can predict the opponent’s behavior acts as the “conceptual
leader”. Unlike most of these works, which typically assume full knowledge of the opponent’s
payoff function, we operate in an incomplete information setting, where the learner must infer
the leader’s incentives. In the complete information case of imitative deception [e.g., Birmpas
et al., 2021], to induce an equilibrium, the manipulator constructs a certain follower type to
minimize the leader’s utility beyond that equilibrium. In contrast, our learner must design
various follower types to generate different best response partitions, in order to extract sufficient
information about the leader’s payoff structure.

2 Preliminaries

Stackelberg games are a standard framework for studying strategy commitment in game theory.
In a Stackelberg game, a leader commits to a strategy and a follower best responds to this
commitment. We consider general bi-matrix games in this paper. A bi-matrix game G =
(uL, uF ) is given by two matrices uL, uF ∈ Rm×n, which specify the leader’s and the follower’s
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payoffs, respectively. The leader has m actions (i.e., pure strategies) at their disposal, each
corresponding to a row of the payoff matrices; the follower has n actions, each to a column.
Entries uL(i, j) and uF (i, j) are the payoffs of the leader and the follower when a pair (i, j) ∈
[m]× [n] of actions is played.

In the mixed strategy setting, the leader can further commit to a mixed strategy, which is
a distribution over the actions, i.e., x ∈ ∆m := {x ∈ Rm

≥0 :
∑

i∈[m] xi = 1}. Slightly abusing

notation, we denote by uL(x, j) =
∑

i∈[m] xi ·uL(i, j) the leader’s expected payoff for a strategy

profile (x, j), and similarly denote by uF (x, j) =
∑

i∈[m] xi · uF (i, j) the follower’s expected
payoff. We will refer to a payoff matrix and the corresponding payoff function interchangeably
throughout this paper.

2.1 Stackelberg Equilibrium

A (pure) best response of the follower to a mixed strategy x of the leader is given by j ∈ BR(x),
where BR(x) := argmaxj∈[n] u

F (x, j) is the follower’s best response set, or a BR-correspondence
BR : ∆m → 2[n]. We consider only pure best responses as at least one optimal response is always
pure. The inverse of BR will also be useful: for any j ∈ [n], BR−1(j) := {x ∈ ∆m : j ∈ BR(x)}
is the set of leader strategies that incentivize the follower to respond j.

The leader’s optimal commitment is captured by the following optimization, under the
assumption that the follower breaks ties in favor of the leader when there are multiple actions
in BR(x):

(x, j) ∈ argmax
x′∈∆m, j′∈BR(x′)

uL(x′, j′). (1)

(x, j) is called a strong Stackelberg equilibrium (SSE). Equivalently, using the inverse of BR, we
have,

(x, j) ∈ argmax
x′∈BR−1(j′), j′∈[n]

uL(x′, j′). (2)

The SSE is the most widely used solution concept for Stackelberg games. The optimistic tie-
breaking assumption it adopts is justified by the fact that the desired tie-breaking behavior
can often be induced by an infinitesimal perturbation in the leader’s strategy [von Stengel and
Zamir, 2004].

Definition 1 (SSE). A strategy profile (x, j) ∈ ∆m × [n] is an SSE of a game G = (uL, uF ) if
Eq. (1) holds (or equivalently, Eq. (2) holds).

2.2 Inducible SSEs

We denote by SSE(uL, uF ), or SSE(G), the set of SSEs of the game G = (uL, uF ). Moreover, we
denote by SSE(uL) :=

⋃
ũF∈Rm×n SSE(uL, ũF ) the set of inducible SSEs. For ease of description,

we will refer to a payoff matrix ũF ∈ Rm×n of the follower as a follower type.

Definition 2 (Inducibility). A follower type ũF ∈ Rm×n induces an SSE (x, j) (w.r.t. uL) if
(x, j) ∈ SSE(uL, ũF ). A strategy profile (x, j) is said to be inducible (w.r.t. uL) if (x, j) ∈
SSE(uL).

The following result by Birmpas et al. [2021] provides an elegant characterization of the set
of inducible SSEs. The characterization establishes an interesting connection between inducible
SSEs and the leader’s maximin value M[n], where for every subset S ⊆ [n] of the follower’s
actions,

MS := max
x∈∆m

min
j∈S

uL(x, j) and MS := argmax
x∈∆m

min
j∈S

uL(x, j), (3)
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are the leader’s maximin payoff and the set of maximin strategies when the follower’s responses
are restricted within S. Note that by definition MS′ ≥ MS ≥ M[n] for any S′ ⊆ S ⊆ [n].

Theorem 2.1 (Birmpas et al. [2021]). A strategy profile (x, j) is inducible if and only if
uL(x, j) ≥ M[n] := maxy∈∆m mink∈[n] u

L(y, k). Moreover, given uL, a payoff matrix ũF that
induces (x, j) can be computed in polynomial time.

Intuitively, the follower can behave as follows to induce (x, j): for any strategy y ̸= x of the
leader, respond with a worst action k ∈ argmink′∈[n] u

L(y, k) for the leader; and respond with j
if the leader commits to x. Namely, the follower is completely adversarial to the leader unless
she commits to x. The leader obtains at most the maximin value M[n] for any strategy y ̸= x

as a result. So, as long as uL(x, j) ≥ M[n] holds, x becomes the leader’s optimal commitment.
Despite the simple intuition, to construct a payoff matrix that realizes this behavior is non-
trivial and relies crucially on a known uL as shown in Birmpas et al. [2021]. Theorem 2.1 will
be useful for achieving inducibility-equivalence based on in- and cross-component equivalent
functions (Section 5.3) and for solving the equilibrium inducing problem (Section 5.4).

3 Main Problem: Incentive Learning via the SSE Oracle

We consider the scenario where the leader’s payoff matrix uL is unknown to us (as the learner),
and we want to learn the leader’s incentive. Our only source of information is an SSE oracle
ASSE, which decides whether a given strategy profile can be induced as an SSE by a given
follower type.

Definition 3 (SSE oracle). Given as input a follower type ũF and a strategy profile (x, j) ∈
∆m × [n], the SSE oracle ASSE outputs whether (x, j) ∈ SSE(uL, ũF ) or not.

Remark 1. A query to the SSE oracle creates a new follower of the given type ũF to interact
with the leader. As discussed in the previous sections, one can create a new user account to
interact with an app or web service. Note that making multiple queries differs from playing a
repeated game with the leader (e.g., Haghtalab et al. [2022]). In the latter, the leader knows
that she is interacting with the same follower repeatedly. In contrast, in our model, each follower
appears as a new player to the leader and it is impossible for the leader to know for a fact that
they are all controlled by the same learner (e.g., an app with millions of users cannot easily
identify a few accounts controlled by one user).

Remark 2. The oracle requires each query to specify a candidate SSE (x, j) in addition to
the follower type ũF . This may appear weaker and harder to maneuver than one that only
requires the latter. In fact, the SSE in the input is an additional lever for us to sidestep the
equilibrium selection issue when multiple SSEs exist. We will extend our results to oracles that
do not require this input in section 8, where the leader effectively selects one SSE for us, in the
presence of multiple.

Remark 3. An alternative formulation is to assume that the leader adopts a policy that maps
each follower type to a leader strategy, with the learning task being to infer this policy. How-
ever, without any structural assumptions on the policy, the learning task becomes intractable.
Moreover, learning from equilibrium behaviors not only facilitates this process but also provides
deeper insights into the nature of the solution concept itself.
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3.1 Strategic Equivalences

With query access to ASSE, we aim to learn a payoff matrix, ũL, that is strategically equivalent
to uL in the strongest possible sense that can be achieved. We measure the time and query
complexity w.r.t. the bit size of uL, assuming that the entries of uL are rational numbers.
Moreover, we assume that an upper bound of the bit size of uL is given.

Definition 4 (Strategic equivalence). A payoff matrix ũL ∈ Rm×n is (strategically) equivalent
to uL in a set S ⊆ ∆m × ∆n if ũL(s) > ũL(s′) ⇐⇒ uL(s) > uL(s′) for all strategy profiles
s, s′ ∈ S.

Ideally, we would like to find a matrix equivalent to uL in the entire space ∆m×∆n of strategy
profiles. However, this is not possible because of cases indistinguishable under information
exposed by ASSE. In general, the matrix ũL our learning algorithm outputs ensures all of the
following forms of equivalences (also see Fig. 1).

• In-Component Equivalence: ũL is equivalent to uL in ∆m × ∆(C) for each non-
dominance component C ⊆ [n] (Definition 5).

• Cross-Component Equivalence: ũL is equivalent to uL in ∆m × ([n] \ Λ), where Λ is
a “hard set” (defined below in Eqs. (4) and (5)).

• Inducibility Equivalence: ũL is inducibility-equivalent to uL (Definition 6).

The non-dominance components are connected components of the non-dominance graph. It is
an undirected graph that describes, for each pair of the follower’s actions, whether they obviously
dominate each other (w.r.t. the leader’s payoff). To define the graph, we exclude a hard set of
follower actions, Λ := Λ′ ∪ Λ′′, for which the SSE oracle reveals little information:

Λ′ :=
{
j ∈ [n] : M{j} = M[n]

}
, (4)

and Λ′′ :=
{
j ∈ [n] \ Λ′ : M{j,k} = M[n] for some k ∈ [n]

}
. (5)

Namely, these actions achieve the leader’s maximin value M[n] either alone or in a pair. Intu-
itively, since the leader’s value in an SSE is always at least M[n], strategy profiles with values
lower than this cannot never be an SSE. Therefore, the SSE oracle reveals almost no information
about these profiles. The components of the graph and the hard sets Λ′ and Λ′′ form a partition
of [n].

Definition 5 (Non-dominance graph). The non-dominance graph of uL is an undirected graph
G = (E, [n] \ Λ) where E consists of edges {j, k} in which j and k do not obviously dominate
each other, i.e.,

mini∈[m] u
L(i, j) < maxi∈[m] u

L(i, k) and mini∈[m] u
L(i, k) < maxi∈[m] u

L(i, j).

The set of vertices in a connected component of G is called a non-dominance component of uL.

Therefore, ũL ensures the strongest form of equivalence within each non-dominance compo-
nent. Across the components, it ensures a weaker form of equivalence defined over the follower’s
pure strategies, excluding those in Λ. One can verify that |Λ′| > 1 and |Λ′′| > 2 only in degen-
erate cases, which appear with probability zero if every entry of uL is perturbed independently
by a small random noise. Hence, for non-degenerate instances, ũL ensures an equivalence al-
most over the entirety of ∆m × [n]. Across the components, this is the maximum degree of
equivalence that can be achieved due to the obvious dominance between the components.2 In

2E.g., in Fig. 1, if we simultaneously apply different affine transformations to the components, through the
oracle ASSE one cannot differentiate the original matrix from the outcome resulting from the transformations.
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Λ′
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C2

M[n]

x1

uL

Figure 1: Non-dominance components C1 and C2 and the set Λ. The leader has two actions in
the illustrated instance, so her mixed strategy can be represented by the probability x1. Each
line represents uL(x1, j) for an action j of the follower. Note that actions in non-dominance
components do not necessarily obviously dominate actions in Λ. In this instance, we have
Λ′′ = ∅ and M[n] = M{j} for any j ∈ Λ′ (i.e., the maximum of uL(x1, j)). If we remove the two
actions in Λ′ from this example, the set C1 will become Λ′′ and Λ′ will be empty, in which case
M[n] is achieved at the intersection of the lines in Λ′′ (C1).

instances where Λ = ∅ and all the followers’ actions are in the same non-dominance component,3

the function ũL we obtain will be equivalent to uL in the entire strategy space ∆m ×∆n.
In addition to the in- and cross-component equivalences, ũL is also inducibility-equivalent

to uL.

Definition 6 (Inducibility-equivalence). A payoff matrix ũL ∈ Rm×n is inducibility-equivalent
to uL if SSE(ũL) = SSE(uL).

A notable application of inducibility-equivalence is the following problem proposed by Birm-
pas et al. [2021]: maxũF ,(x,j)∈SSE(uL,ũF ) u

F (x, j), i.e., to find an inducible SSE that is optimal

w.r.t. a follower’s actual payoff. The inducibility-equivalence between ũL and uL enables us to
solve the problem based on ũL, instead of uL. When uL is known, a polynomial-time algorithm
based on the characterization in Theorem 2.1 is provided by Birmpas et al. [2021] to solve this
problem.

4 Warm-up: Basic Results via the SSE Oracle

Before presenting our overall approach, we first describe several basic results that can be effi-
ciently obtained by using the SSE oracle. The SSE oracle does not directly reveal any payoffs
but provides hints about the relation of payoffs in SSEs. For example, if through the oracle
we can confirm that two strategy profiles (x, j) and (x′, j′) are both SSEs, then we know that
uL(x, j) = uL(x′, j′). With this in mind, we can easily and efficiently identify the following
useful information.

Observation 4.1. With query access to ASSE, for every follower action j ∈ [n], the set of
the leader’s (pure) best responses to j, Ij := argmaxi∈[m] u

L(i, j) , can be computed efficiently.
Hence, M{j} = {x ∈ ∆m :

∑
i∈Ij xi = 1}, which is the convex hull of Ij, can be computed

efficiently, too.

Specifically, to decide whether i ∈ Ij , we can use a follower type ũF where j is strictly
dominant, i.e., ũF (i, j) = 1 and ũF (i, j′) = 0 for all j′ ̸= j. Then B̃R

−1
(j) = ∆m is the

only non-empty best response region. By definition, (i, j) ∈ SSE(uL, ũF ) ⇐⇒ uL(i, j) =

3Having all the actions in the same non-dominance component is even milder than the condition where no
action obviously dominates another. Also note that obvious dominance is a stronger notion than strong dominance
(see Definition 9).
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maxx∈∆m uL(x, j) ⇐⇒ i ∈ Ij . We can decide whether i ∈ Ij by checking if (i, j) ∈ SSE(uL, ũF )
holds via querying ASSE.

Observation 4.2. With query access to ASSE, for every i ∈ [m] and j, k ∈ [n], the relation
(i.e., >, =, or <) between M{j} and uL(i, k) can be decided efficiently.

To decide the above relation, we slightly modify ũF defined above by letting ũF (i, k) =
1. This results in B̃R

−1
(k) = {i}, while all other best response regions remain as before.

Consequently, uL(i, k) and M{j} are the leader’s maximum utilities in the respective regions.
We can learn the relation by querying whether (i, k) and some (i′, j) for some i′ ∈ Ij are in
SSE(uL, ũF ).

5 Main Theorem and Approach Overview

Our main approach is to learn affine transformations of uL. By writing uL as

uL(x, j) ≡ γj · aj · x+ βj (6)

for some γj ∈ R>0, aj ∈ Rn, and βj ∈ R, we address two tasks: 1) learn the gradient direction
aj for each j ∈ [n] \ Λ′, and 2) learn the relative parameters γj/γj∗ and (βj − βj∗)/γj∗ within
each component. Specifically, details of learning aj is presented in Section 6, where the set Λ′

will also be identified as a byproduct. Based on the gradient directions, we proceed as follows.

5.1 In-Component Equivalence

The non-dominance relations between all pairs of actions can be determined efficiently via
Observation 4.2, so we obtain the non-dominance graph. The non-dominance components can
be identified by using standard algorithms for computing connected components of a graph.
For each component C, we fix an action j∗ ∈ C and learn additional information to infer two
quantities γj/γj∗ and (βj − βj∗)/γj∗ for every action j ∈ C. (The exact values of γj , γj∗ , βj ,
and βj∗ remain unknown.) With these quantities, we construct the following function:

ũL(x, j) =
γj
γj∗

· aj · x+
βj−βj∗
γj∗

. (7)

Given Eq. (6), ũL is then an affine transformation of uL (for actions in C), such that ũL =
uL/γj∗ −βj∗/γj∗ . The equivalence between ũL and uL in ∆m×∆(C) then follows immediately.4

The details of learning γj/γj∗ and (βj − βj∗)/γj∗ are shown in Section 7. Note that, we
actually begin with a supergraph of the non-dominance graph, defined on a larger vertex set
[n] \ Λ′ as Λ′′ is initially unknown. However, actions in Λ′′ will be detected during the learning
process. Whenever we detect an action λ ∈ Λ′′, we restart the algorithm with the smaller set
where λ is excluded.

5.2 Cross-Component Equivalence

By definition, an action either dominates (w.r.t. the leader’s payoff) all the actions in another
component, or is dominated by all of them. Hence, we can order the components so that every
action in the (ℓ + 1)-th component Cℓ+1 dominates every action in the ℓ-th, Cℓ (see Fig. 1).
Formally,

min
i∈[m],j∈Cℓ+1

uL(i, j) ≥ max
i∈[m],j∈Cℓ

uL(i, j) (8)

4Since j∗ is different for different components, ũL is not an affine transformation of uL w.r.t. all the columns.
Therefore, we cannot conclude that ũL is equivalent to uL in the entire space ∆m ×∆n.
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for all ℓ = 1, . . . ,K−1, where K denotes the number of components. To achieve the equivalence
across the components in ∆m× ([n]\Λ), we modify the matrix obtained in Section 5.1: we raise
the values in each component by an appropriate amount to capture the dominance of each Cℓ+1

against Cℓ. (Intuitively, we stack the components on top of each other according to their order
in uL, as in Fig. 1.) The resulting matrix preserves the equivalence in ∆m × ∆(C) for each
component C because such modification does not change the relative payoffs of the actions in
each component.

Proposition 5.1. Given a matrix ũL that is equivalent to uL in ∆m × C for every non-
dominance component C, a matrix equivalent to uL in ∆m × ([n] \ Λ) can be computed in
time polynomial in the total bit size of ũL and uL.

5.3 Inducibility-Equivalence

Finally, to achieve the inducibility-equivalence, we apply the following modification to ũL ob-
tained above (which already ensures the in- and cross-component equivalence). As we will show
next, for a suitable choice of v, the matrix ũ′v will be inducibility-equivalent to uL. For every
i ∈ [m], j ∈ [n]:

ũ′v(i, j) :=


ũL(i, j) if j /∈ Λ

v + aji − aj · x∗
j if j ∈ Λ′′

v + ãji − ãj · x∗
j if j ∈ Λ′

(9)

where x∗
j is an arbitrary strategy such that uL(x∗

j , j) = M[n], and each ãj is a vector such that
ãji = 1 if i ∈ M{j}, and ãji = 0, otherwise. The strategies x∗

j will be obtained along with Λ′

and Λ′′ (see Propositions 6.9 and 7.3), while ãj can be obtained by using Observation 4.1.
Intuitively, with different v, ũ′v changes the values of actions in Λ relative to the values

of the other actions. The key is to find a v that matches the values of strategy profiles that
separate inducible and non-inducible strategy profiles. (The boundary condition is given by
Theorem 2.1.) We show that the following value v∗ of v is the desired one:

v∗ :=

{
ϕ−1(M[n]) if uL(s) = M[n] for some s ∈ ∆m × ([n] \ Λ);
mins∈∆m×([n]\Λ) ũ

L(s) otherwise;
(10)

where ϕ : R → R is a function that converts the values of strategy profiles under ũL to their
values under uL, i.e., ũL(s) = v ⇐⇒ uL(s) = ϕ(v) for every s ∈ ∆m × ([n] \ Λ). It is
straightforward that if ũL and uL are equivalent in ∆m × ([n] \ Λ), then ϕ is well-defined and
strictly increasing.

Lemma 5.2 proves the inducibility-equivalence between ũ′v∗ and uL. Moreover, it offers a
way to decide whether v ≥ v∗ or v < v∗ for any given v, so we can compute v∗ via binary
search (it is impossible to obtain v∗ directly from Eq. (10) due to unknown parameters). Since
Eq. (9) does not change the values of actions not in Λ, the matrix ũ′v∗ preserves the equivalences
achieved in Sections 5.1 and 5.2. Finally, in addition to deciding the inducibility, statement (i)
in Lemma 5.2 allows us to efficiently compute a follower type that induces a given strategy
profile. This gives Proposition 5.3.

Lemma 5.2. Suppose that ũL is equivalent to uL in ∆m × ([n] \ Λ). Then ũ′v∗ is inducibility-
equivalent to uL. Moreover, for all s ∈ ∆m × ([n] \ Λ) such that ũL(s) = v:

(i) if v ≥ v∗, then s ∈ SSE(ũ′v) and, for all ũF ∈ Rm×n, s ∈ SSE(ũ′v, ũ
F ) =⇒ s ∈

SSE(uL, ũF );

(ii) if v < v∗, then s /∈ SSE(uL).

10



Proposition 5.3. Given a matrix ũL equivalent to uL in ∆m×([n]\Λ), a matrix ũ′ inducibility-
equivalent to uL can be computed in polynomial time (in the total bit size of ũL and uL).
Moreover, for every s ∈ SSE(uL), a follower type ũF such that s ∈ SSE(uL, ũF ) can be computed
in polynomial time.5

Specifically, to use Lemma 5.2 to decide the relation of v∗ and v, we pick a strategy profile
s with ũL(s) = v, and ask the oracle if s ∈ SSE(ũL, ũF ) for ũF such that s ∈ SSE(ũ′v, ũ

F ).
The type ũF can be computed efficiently via the algorithm by Birmpas et al. [2021]. Moreover,
we can compute the exact value of v∗ using the Stern-Brocot tree [Graham et al., 1989], given
an upper bound on the bit size of v∗.6

5.4 Summary and Application to Equilibrium Inducing

Given the procedures outlined above, the next sections focus on learning the gradient direction
aj (Section 6), and the quantities γj/γj∗ and (βj − βj∗)/γj∗ (Section 7) for achieving the in-
and cross-component equivalences. During these processes, we will also obtain Λ′, Λ′′, and x∗

j

(for constructing ũ′v in Eq. (9)). The following theorem summarizes our main result.

Theorem 5.4. With query access to ASSE, in time polynomial in the bit size of uL, we can
compute a matrix ũL that is simultaneously inducibility-equivalent to uL, equivalent to uL in
∆m × ([n] \ Λ), and equivalent to uL in ∆m × ∆(C) for every non-dominance component C.
Moreover, for every s ∈ SSE(uL), a follower type ũF such that s ∈ SSE(uL, ũF ) can be computed
in polynomial time.

As a corollary of Theorem 5.4, we can efficiently solve the equilibrium inducing problem,
without knowing uL. Namely, we can compute a ũF to induce an SSE s∗ maximizing a given
objective uF . One can use ũF to misinform the leader about their incentive and steer the game
to a more profitable equilibrium s∗. This extends the results of Birmpas et al. [2021] to the
incomplete information setting.

Corollary 5.5. With query access to ASSE, for any given payoff function uF ∈ Rm×n, one
can compute a strategy profile s∗ ∈ argmaxs∈SSE(uL) u

F (s) and a matrix ũF ∈ Rm×n such that

s∗ ∈ SSE(uL, ũF ) in time polynomial in the bit size of uL.

6 Learning Gradient Directions

We demonstrate how to learn a gradient direction aj for every j /∈ Λ′, i.e.,

γj · aj = ∇uL(·, j) ≡
(
uL(1, j), . . . , uL(m, j)

)
for some positive factor γj (which need not be known). To simplify the notation, we will present
an algorithm for learning an. The other aj ’s can be learned analogously.

To learn an, intuitively, we construct a correspondence B̃R where the boundary of B̃R
−1

(n) is
perpendicular to ∇uL(·, n), so that we can infer an based on the normal vector of the boundary.
Since the oracle ASSE only exposes information about SSEs, the construction needs to ensure

5Note that, however, s ∈ SSE(ũ′, ũF ) does not necessarily imply s ∈ SSE(uL, ũF ). Indeed, as shown in the
proof, we obtain ũ′

v∗ as an inducibility-equivalent matrix to uL, but use ũ′
v to compute ũF , where v = ũL(s).

6All the binary searches in this paper are based on the Stern-Brocot tree, so that we find the exact rational
numbers. Notably, if we can distinguish whether v > v∗, v = v∗, or v < v∗ for any v, the search will terminate
automatically when v = v∗, in which case there is no need to know the exact bit size bound of v∗, in order to
determine when to terminate the search. As long as the bit size is bounded by a polynomial, the binary search
terminates in polynomial time. Hence, only when we cannot distinguish the three possible relations of v and v∗

(e.g, we can only distinguish v > v∗ or v ≤ v∗), we derive an upper bound on the bit size to determine when to
terminate the search. And this holds for most binary searches in this paper.
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R

B̃R
−1

(n)

an · x = d

Figure 2: A BR-correspondence B̃R constructed for learning an. The triangle represents the
strategy space ∆m of the leader. The black dot at the top represents M{n} in this example.
The two red dots on the boundary of B̃R

−1
(n) are two critical points defining the boundary

hyperplane.

that all the points on the boundary of B̃R
−1

(n) are SSE strategies. For example, in Fig. 2, we
want the boundary to be at a position where both red points, say x1 and x2, are SSE strategies:
(x1, n), (x2, n) ∈ SSE(uL, ũF ). This can be confirmed via the oracle ASSE, and it implies that
uL(x1, n) = uL(x2, n), so the boundary defined by x1 and x2 is perpendicular to ∇uL(·, n).

For ease of description, we reorder the leader’s actions i ∈ [m] according to uL(i, n) so that,
throughout this section, for some m∗ ∈ [m] and all i ∈ [m∗ − 1]:

uL(i, n) < uL(m∗, n) = uL(m∗ + 1, n) = · · · = uL(m,n) = M{n}. (11)

The payoff information required for the reordering is known by Observation 4.1. W.l.o.g., we
can also assume that m∗ > 1: in the case where m∗ = 1, the payoff uL(i, n) is the same for all
i ∈ [m]. Trivially, this implies that the gradient of uL(·, n) is 0, so an = 0 is all we need.

Now we formalize our approach via Lemma 6.1, which reduces our task to finding a set of
m∗ − 1 points x1, . . . ,xm∗−1 that satisfy the properties stated in the lemma. In Fig. 2, these
points are the red ones that define the boundary between R and B̃R

−1
(n); we have m∗ = m

in this example. When m∗ < m, the boundary may be a more complicated surface formed
by multiple hyperplanes (e.g., Fig. 3). The points x1, . . . ,xm∗−1 define a face on this surface
where the leader’s payoffs are equal. ∇uL(·, n) is perpendicular both to this face and to a
(m+ 1−m∗)-dimensional face of ∆m.

Lemma 6.1. Suppose that the following conditions hold for strategies x1, . . . ,xm∗−1 ∈ ∆m:

(i) uL(x1, n) = · · · = uL(xm∗−1, n);

(ii) xii > 0 for all i ∈ [m∗ − 1]; and

(iii) 1− xii =
∑m

k=m∗
xik for all i ∈ [m∗ − 1].

Then (−1/x1
1,−1/x2

2, · · · ,−1/xm∗−1
m∗−1, 0, · · · , 0) = γ · ∇uL(·, n) for some γ > 0.

For any given candidate points x1, . . . ,xm∗−1, we must verify that they indeed satisfy the
above properties before using them to compute the gradient direction. While properties (ii)
and (iii) can be verified directly based on the probability values, to verify whether (i) holds
requires information in uL. Since ASSE is the only source of this information, we use candidate
points such that (xi, n) ∈ SSE(uL, ũF )—which is verifiable via ASSE—to ensure that (i) holds.
To achieve this, the correspondence B̃R must assign sufficiently low payoffs to leader strategies
in R = ∆m \ B̃R

−1
(n) (see Fig. 2), so that these strategies do not prevent (xi, n) from being an

SSE. In some cases, more than one follower response is needed to “cover” R under low payoffs.
This motivates the notion of maximin-cover.
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Definition 7 (Cover). A follower payoff matrix µ is a maximin-cover (or cover) of S ⊆ [n] if

max
x∈MS

max
j∈B̃R(x)

uL(x, j) < MS , (12)

where B̃R denotes the BR-correspondence defined by µ. It is a proper cover of S if it holds in
addition that S ∩ B̃R(x) = ∅ for all x ∈ ∆m.

Namely, we want to apply a cover of {n} to the region R to limit the leader’s maximum
attainable payoff in this region. Intuitively, in Fig. 2, when we move the boundary between R
and B̃R

−1
(n) towards the vertex at the top, the leader’s maximum attainable payoffs in R and

B̃R
−1

(n) will approach the left and right sides, respectively, of Eq. (12) (with S = {n}).
The additional requirement that a cover is proper is useful, because we do not want any

strategies in R to induce n in order to make the boundary of B̃R
−1

(n) easy to manage. As it
turns out in Lemma 6.2, a proper cover is computationally not more demanding than a cover.
Therefore, in what follows, unless otherwise specified, we will simply refer to a proper cover as
a cover. By Lemma 6.3, the existence of a cover is characterized by a positive gap between MS

and the maximin value M[n].

Lemma 6.2. Given a cover of set S ⊆ [n], a proper cover of S can be constructed in polynomial
time.

Lemma 6.3. For any S ⊆ [n], a cover of S exists if and only if MS > M[n].

Next, we first demonstrate in Section 6.1 that, given a cover of {n}, a set of strategies
x1, . . . ,xm∗−1 satisfying the properties in Lemma 6.1 can be computed efficiently; hence we
obtain a desired an. Section 6.2 then demonstrates how to efficiently find a cover, or decide
that no cover exists. When no cover exists, we can conclude that M{n} = M[n] and hence n ∈ Λ′.
So, the attempt to learn the aj ’s will also reveal the set Λ′. According to our agenda outlined
in Section 5, there is no need to further learn an if n ∈ Λ′.

In summary, the approach to learning an is as follows.

1. Compute a cover µ of {n} (see Section 6.2).

2. If no cover of {n} exists, claim that n ∈ Λ′ and terminate.

3. Otherwise, use µ to compute x1, . . . ,xm∗−1 satisfying the properties in Lemma 6.1 (see
Section 6.1). Output an = (−1/x1

1,−1/x2
2, · · · ,−1/xm∗−1

m∗−1, 0, · · · , 0).

6.1 Computing x1, . . . ,xm∗−1

We show how to compute x1, . . . ,xm∗−1, given a cover µ of {n}. For each i ∈ [m∗ − 1], define

Γi :=
{
x ∈ ∆m : 1− xi =

∑m

k=m∗
xk

}
, (13)

which is a face of ∆m consisting of leader strategies satisfying Lemma 6.1 (iii). We aim to
construct a function ũF that induces a strategy xi ∈ Γi to form an SSE with n, for each
i ∈ [m∗ − 1]. This requires the leader’s maximum attainable payoff under ũF to be achievable
at every Γi. If M{n} is covered by only one follower action, say action i, this is relatively easy
to achieve because the boundary separating B̃R

−1
(n) and B̃R

−1
(i) will be a hyperplane as in

Fig. 2. However, if more than one action is used to cover M{n}, the shape of the separating
boundary may become irregular, potentially with protruding vertices within the boundary’s
interior. We need a better construction to ensure that these vertices do not yield payoffs higher
than the leader’s best strategies within Γi.
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Figure 3: An illustration of fg(n) where m = 4, n = 3, and m∗ = 3. This means uL(i, 3) <
uL(3, 3) = uL(4, 3) = M{3} for i = 1, 2 according to Eq. (11); hence, M{3} is the edge connecting
the vertices 3 and 4. The polytope represents ∆4 and is divided into three best response regions
f−1
g (1), f−1

g (2), and f−1
g (3), where the light blue one is f−1

g (3). The set Γ1, as defined in
Eq. (13), is the facet at the front, where x1 + x3 + x4 = 1 for all x.

To proceed, pick arbitrary x1, . . . ,xm∗−1 such that

xi ∈ argmin
x∈Γi∩f−1

g (n)

xi, (14)

where fg : ∆m → 2[n] denotes the BR-correspondence of the following follower type ũFg , param-
eterized by g = (g1, . . . , gm∗−1) ∈ Rm∗−1:

ũFg (x, j) :=

{∑m
i=m∗

xi · µ(i, j) if j < n;∑m∗−1
i=1 xi · gi +W ·

∑m
i=m∗

xi if j = n.
(15)

where W = mini,j µ(i, j)− 1.
Fig. 3 illustrates the above construction. Intuitively, each component gi of g controls how

far we want to push xi towards M{n}. We show next how to find an appropriate g that results
in x1, . . . ,xm∗−1 defined above satisfying the conditions in Lemma 6.1. We first observe that
xi is well-defined—that is, Γi ∩ f−1

g (n) ̸= ∅—as long as gi > 0. Moreover, x1, . . . ,xm∗−1 satisfy
(ii) and (iii) in Lemma 6.1 (where (iii) holds by Eq. (13)).

Observation 6.4. If gi > 0, then Γi ∩ f−1
g (n) ̸= ∅ and xii > 0.

It remains to achieve (i) in Lemma 6.1. We define the following set for every g ∈ Rm∗−1
>0 :

Ig :=
{
i ∈ [m∗ − 1] : (xi, n) ∈ SSE(uL, ũFg )

}
, (16)

whereby the aim is to find g that makes Ig = [m∗ − 1], so that (i) holds. Clearly, for any
given x1, . . . ,xm∗−1, Ig can be computed by using the oracle ASSE. Moreover, for any x ∈ Γi,
the leader’s utility uL(x, n) depends only on xi, as xi = 1 −

∑m
k=m∗

xk and uL(m∗, n) = · · · =
uL(m,n) (Observation 6.5). Hence, the definition of Ig is invariant w.r.t. the specific choice of
xi in Eq. (14).

Observation 6.5. For all x ∈ Γi, it holds that u
L(x, n) = ci · xi + di for some constants ci < 0

and di.

We will gradually increase each component of g until Ig = [m∗−1]. According to Lemma 6.6,
this can be done efficiently. Intuitively, increasing each gi causes xii and, in turn, uL(xi, n) to
increase. So, ideally, when uL(xi, n) is sufficiently large, (xi, n) yields as much utility as the
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other optimal strategy profiles and becomes an SSE. Notably, maxx∈f−1(n)\(∪i∈[m∗−1]Γi)u
L(x, n)

may also increase with gi. As we show in the proof of Lemma 6.6, our design ensures that
no extreme point of f−1

g (n) appears in the interior of ∆m (also see Fig. 3). Therefore, points
outside

⋃
i∈[m∗−1] Γi will never yield a higher utility than (xi, n). x1, . . . ,xm∗−1 are always the

leader’s optimal strategies in f−1
g (n).

Lemma 6.6. A vector g such that Ig = [m∗ − 1] can be computed in polynomial time.

By definition, x1, . . . ,xm∗−1 defined with this g then satisfy all the conditions in Lemma 6.1.

Proposition 6.7. Given a cover µ of {n}, a set of strategies x1, . . . ,xm∗−1 ∈ ∆m that satisfy
the conditions in Lemma 6.1 can be computed in polynomial time.

6.2 Computing a Cover of {n}

Now we describe how to compute a cover of {n} to complete this section. We first deal with an
easier case, where n /∈ S∗ := argminj∈[n]M{j}. In this case, any arbitrary ℓ ∈ S∗ gives

uL(x, ℓ) ≤ M{ℓ} < M{n} for all x ∈ ∆m.

Thus, any payoff matrix where ℓ strictly dominates all other actions forms a cover of {n}. Using
results in Section 6.1, we can then compute an. So, in what follows, we assume aj is given for
all j ∈ [n] \ S∗. Note that we can efficiently decide whether j ∈ S∗ using ASSE, similarly to
Observation 4.1.

Next, we consider the case where n ∈ S∗. We present a more general result, Proposition 6.8,
which finds a cover for any S ⊆ [n]. This result will also be useful for arguments in the next
sections, where we need to find covers for size-2 subsets of [n]. To apply this method requires a
base function that restrict the leader’s utility to at most MS and the follower’s best responses
to actions in S (Definition 8). By this definition, a follower type where n strictly dominates all
other actions is a straightforward base function for {n}.

Definition 8 (Base function). A follower type ũF with BR-correspondence B̃R is a base function

of a set S ⊆ [n] if: 1) B̃R(x) ⊆ S for all x ∈ ∆m, and 2) the leader’s SSE payoff in (uL, ũF ) is
MS .

Proposition 6.8. Suppose that S ⊆ [n], Q = {j ∈ [n] : M{j} = MS}, and the following are

given: 1) aj for all j ∈ [n] \ (S ∪Q), 2) a base function ũF of S, and 3) MS (given by linear
constraints). In polynomial time, we can either compute a cover of S or correctly decide that S
does not admit a cover.

Intuitively, a cover aims to bring down the leader’s maximum attainable payoff in MS

to below MS , so it needs to avoid responding actions j that would result in uL(x, j) ≥ MS .
Ideally, we could just use −uL to achieve this, but since we do not know uL, we learn a cover
that functions similarly.

When no cover of {n} exists, Lemma 6.3 implies that M{n} = M[n], so n ∈ Λ′. Consequently,
our attempt to obtain a cover for every action reveals Λ′ as a byproduct. For every j ∈ Λ′,
we can compute M{j} according to Observation 4.1. Any arbitrary strategy x ∈ M{j} gives

uL(x, j) = M{j} = M[n] and serves as a necessary component for the construction in Eq. (9).

Proposition 6.9. Λ′ can be computed in polynomial time. Moreover, for every j ∈ Λ′, a
strategy x such that uL(x, j) = M[n] can be computed in polynomial time.
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7 Constructing Affine Transformations

Recall that given the gradient information aj we have obtained for each j /∈ Λ′, we can write

uL(x, j) ≡ γj · aj · x+ βj

for some constants γj ∈ R>0 and βj ∈ R unknown to us. We now present how to learn the
quantities γj/γj∗ and (βj−βj∗)/γj∗ for every j ∈ C in each non-dominance component C, where
j∗ ∈ C is a fixed action for every j ∈ C. As described in Section 5, these quantities will allow
us to construct an in-component affine transformation ũL = uL/γj∗ − βj∗/γj∗ .

7.1 Overview

Recall that the set of vertices on non-dominance graph is [n] \ Λ. Since Λ′′ (and hence Λ) is
still unknown, we will start with a supergraph defined based on a larger vertex set [n] \Λ′. We
will gradually identify Λ′′ during the process described in this section. Once any follower action
j ∈ Λ′′ is discovered, we exclude it from the graph and rerun our algorithm.

Given a non-dominance component C, we pick an arbitrary j∗ ∈ C and learn γj/γj∗ and
(βj − βj∗)/γj∗ for every j ∈ C as follows.

1. Find a path (j1, . . . , jk+1) on the non-dominance graph such that: j1 = j∗, jk+1 = j, and
ajℓ ̸= 0 for all ℓ = 1, . . . , k.

2. Learn cℓ := γjℓ+1
/γjℓ and bℓ := (βjℓ+1

− βjℓ)/γjℓ for every ℓ = 1, . . . , k.

3. Output γj/γj∗ =
∏k

ℓ=1 cℓ and (βj − βj∗)/γj∗ =
∑k

ℓ=1 bℓ
∏ℓ

ℓ′=1 cℓ′ .

Namely, we find a path connecting j and j∗ in the graph and learn the values cℓ and bℓ. The
values of γj/γj∗ and (βj − βj∗)/γj∗ can then be calculated via the chains of products in Step 3,
i.e.,

γj/γj∗ =
k∏

ℓ=1

cℓ and (βj − βj∗)/γj∗ =
k∑

ℓ=1

bℓ

ℓ∏
ℓ′=1

cℓ′ .

We do not learn γj/γj∗ and (βj − βj∗)/γj∗ directly unless an edge exists between j and
j∗ (otherwise, the payoffs they yield do not overlap, so we cannot directly infer any relative
information). Since j and j∗ are in the same component, a path between them always exists
and can be found efficiently via standard path-finding algorithms. Moreover, the requirement
ajℓ ̸= 0 in Step 1 can always be satisfied: First, we can always find some j∗ with aj∗ ̸= 0 to
start with—otherwise, it must be that C contains only one action. Second, if ajℓ = 0 for some
ℓ > 1, we can eliminate this node because that implies an edge exists between jℓ−1 and jℓ+1.
While aj (i.e., ajk+1

) may indeed be 0, in that case ũL(x, j) = (βj − βj∗)/γj∗ , so we only need
to learn (βj − βj∗)/γj∗ .

Our task then reduces to Step 2: learning cℓ and bℓ. We present how this can be done next.

7.2 Learning cℓ and bℓ: Preliminaries

For convenience, we assume jℓ = 1 and jℓ+1 = 2, and show how to learn γ2/γ1 and (β2−β1)/γ1.
The assumption implies the following:

• 1, 2 /∈ Λ′ (so M{1} > M[n] and M{2} > M[n]).

• There is an edge between 1 and 2 in the non-dominance graph.

• M{1} ≤ M{2}, and action 1 does not strongly dominate (Definition 9) action 2 w.r.t. uL.
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Specifically, the third condition holds w.l.o.g.: if M{1} > M{2}, we can swap the two actions
and learn γ1/γ2 and (β1−β2)/γ2, from which γ2/γ1 and (β2−β1)/γ1 can be derived trivially. A
similar approach applies if action 1 strongly dominates action 2. Note that the strong dominance
is a weaker notion than the obvious dominance we used to define the non-dominance graph.

Definition 9 (Strong dominance). An action j ∈ [n] strongly dominates an action k ∈ [n]
w.r.t. uL if : 1) uL(i, j) ≥ uL(i, k) for all i ∈ [m]; and 2) there exists i′ ∈ [m] such that
uL(i′, j) > uL(i′, k).7

7.2.1 Equilibrium Response Oracle

Additionally, when aj is known, we can also assume access to the following oracle AER (Defini-
tion 10), which determines if a given action j can be induced as an equilibrium response (ER)
by a given follower type ũF , i.e., whether it is in the following ER set:

ER(uL, ũF ) := {j ∈ [n] : ∃x, s.t., (x, j) ∈ SSE(uL, ũF )}.

To determine this, it suffices to check whether (x, j) is an SSE (by using ASSE) for an arbi-
trary x in the set argmax

x′∈B̃R
−1

(j)
uL(x′, j) ≡ argmax

x′∈B̃R
−1

(j)
aj · x′, where B̃R is the BR-

correspondence defined by ũF in the input to AER. Such an x can be computed efficiently when
aj is known.

Definition 10 (Equilibrium response oracle). Given a follower type ũF and an action j ∈ [n],
the equilibrium response oracle, AER, outputs whether or not j ∈ ER(uL, ũF ). Moreover, when
j ∈ ER(uL, ũF ), the oracle also outputs a strategy x ∈ ∆m such that (x, j) ∈ SSE(uL, ũF ).

7.2.2 Reference Pairs

To learn γ2/γ1 and (β2−β1)/γ1, the key is to find two different reference pairs (x,y) and (x′,y′)
such that uL(x, 1) = uL(y, 2) and uL(x′, 1) = uL(y′, 2). With these pairs, we can establish the
following system of linear equations to compute γ2/γ1 and (β2 − β1)/γ1:{

γ1 · a1 · x + β1 = γ2 · a2 · y + β2

γ1 · a1 · x′ + β1 = γ2 · a2 · y′ + β2,
(17)

which gives

γ2/γ1 =
a1 · x− a1 · x′

a2 · y − a2 · y′ , and (β2 − β1)/γ1 = a1 · x− a1 · x− a1 · x′

a2 · y − a2 · y′ · a2 · y.

Specifically, we look for reference pairs such that a1 · x ̸= a1 · x′ (i.e., uL(x, 1) ̸= uL(x′, 1))
so that the equation system is of full rank. We demonstrate how these pairs can be obtained
next.

7.3 Obtaining the First Reference Pair

For the first reference pair, we aim to find x and y such that

uL(x, 1) = uL(y, 2) = M{1,2}. (∗)

The value M{1,2} will be useful for ensuring linear independence between this and the second

reference pair. We use the following payoff function ũFd , parameterized by d ∈ R, as a key tool.

7An equivalent statement is: uL(x, j) ≥ uL(x, k) for all x ∈ ∆ and there exists x′ ∈ ∆ such that uL(x′, j) >
uL(x′, k).
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1

2

a2 · x = d

Figure 4: The BR-correspondence of ũFd . The triangle represents the strategy space ∆m of the
leader. The regions labeled 1 and 2 are f−1

d (1) and f−1
d (2), respectively.

ũFd (x, j) :=


−1, if j ∈ [n] \ {1, 2};
0, if j = 1;

d− a2 · x, if j = 2.

(18)

Let fd be the BR-correspondence corresponding to ũFd , and let Gd := (uL, ũFd ) be the game ũFd
induces. As illustrated in Fig. 4, the definition in Eq. (18) gives

f−1
d (1) = {x ∈ ∆m : a2 · x ≥ d},

and f−1
d (2) = {x ∈ ∆m : a2 · x ≤ d}.

Based on the structure of f−1
d , we search for a value of d that makes both actions 1 and 2

equilibrium responses, i.e., ER(Gd) = {1, 2}. Intuitively, a sufficiently small d results in f−1
d (1)

being the whole simplex ∆m while f−1
d (2) being empty, whereby ER(Gd) = {1}. Conversely, a

sufficiently large d results in ER(Gd) = {2}. Hence, the hope is that there exists a middle point
d∗ where ER(Gd∗) = {1, 2}. As we demonstrate in Lemma 7.1, this is indeed the case with

d∗ := (M{1,2} − β2)/γ2. (19)

Since the values of M{1,2}, β2, and γ2 are unknown, d∗ cannot be computed directly via the
expression. We use binary search to pin down its value: by Lemma 7.1, Gd has different
SSE responses when d ≤ d∗ and d ≥ d∗, so the two cases can be identified using AER. Let
V L
d (j) := maxx∈f−1

d (j) u
L(x, j) be the leader’s maximum attainable payoff for inducing best

response j.

Lemma 7.1. V L
d∗(1) = V L

d∗(2) = M{1,2}. Moreover, 1 ∈ ER(Gd) if and only if d ≤ d∗, and
2 ∈ ER(Gd) if and only if d ≥ d∗.

Since ER(Gd∗) = {1, 2}, any x,y such that (x, 1), (y, 2) ∈ SSE(Gd∗) ensure uL(x, 1) =
uL(y, 2). Lemma 7.1 further ensures uL(x, 1) = uL(y, 2) = M{1,2}. Such x and y can be ob-
tained directly from the ER oracle (see Definition 10). In summary, we present Proposition 7.2.

Proposition 7.2. x,y ∈ ∆m satisfying Eq. (∗) can be computed in polynomial time.

7.4 Obtaining the Second Reference Pair

Now we search for the second reference pair. As mentioned previously, in the special case where
a1 or a2 is 0, we only need to learn (β2 − β1)/γ1 or (β1 − β2)/γ2, so one reference pair suffices
and there is no need for a second pair. Therefore, w.l.o.g., we assume a1 ̸= 0 in what follows.
We aim to find a pair (x,y) such that

uL(x, 1) = uL(y, 2) < M{1,2}. (∗∗)
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1

2

h

a1 · x = d1

a2 · x = d2

Figure 5: fd1,d2 : the BR-correspondence used for finding the second reference pair. The triangle
represents the strategy space ∆m of the leader. The regions labeled 1 and 2 are f−1

d1,d2
(1) = P1

and f−1
d1,d2

(2) = P2, respectively.

Given that the payoff of the first pair is exactly M{1,2}, a second pair satisfying Eq. (∗∗) ensures
that the equations in Eq. (17) yield a unique solution.

We aim to construct a BR-correspondence to induce two SSEs (x, 1) and (y, 2). As illustrated
in Fig. 5, the idea is to pull back the boundaries of the best-response regions f−1

d∗ (1) and f−1
d∗ (2)

(where we set a new boundary a1 · x = d1). If we move the boundaries at the right pace, we
can keep the leader’s maximum attainable payoffs in the two regions equal and simultaneously
strictly smaller than M{1,2}. This will then yield a pair that satisfies Eq. (∗∗). Note that a
blank region will appear when the boundaries move. Similar to our approach in Section 6, this
region will need to be filled by a cover to keep the leader’s attainable payoff there lower than
the other two regions.

To better illustrate the approach, we temporarily allow the oracle ASSE to take as part of
the input a BR-correspondence B̃R, instead of a follower type ũF . The oracle answers if the
queried strategy profile is an SSE in the game G̃ = (uL, B̃R), as defined in Eq. (1). We present
an algorithm that uses BR-correspondences in queries to ASSE. The BR-correspondences may
not be realizable with any payoff matrices, so we also design a stronger algorithm that only
uses payoff matrices in the queries. This stronger algorithm is much more involved but can be
better understood based on intuition conveyed by the weaker one. We defer the details of the
stronger algorithm to Appendix D.3.

7.4.1 Querying by Using BR-correspondences

Define the following partition P = (P0, P1, P2) of ∆m, which is parameterized by two numbers
d1 and d2:

P0(d1, d2) := {x ∈ ∆m : a2 · x ≥ d2 and a1 · x ≥ d1},
P1(d1, d2) := {x ∈ ∆m : a2 · x ≥ d2 and a1 · x ≤ d1},
P2(d1, d2) := {x ∈ ∆m : a2 · x ≤ d2}.

Based on the partition, define the BR-correspondence fd1,d2 : ∆m → 2[n] such that for every
x ∈ ∆m:

fd1,d2(x) ⊇


{1}, if x ∈ P1(d1, d2);

{2}, if x ∈ P2(d1, d2);

h(x), if x ∈ P0(d1, d2);

(20)

where h : ∆m → 2[n]\{1,2} is the BR-correspondence of an arbitrary (proper) cover of {1, 2}. We
will shortly discuss how to obtain h. According to the above construction, we have

• f−1
d1,d2

(j) = Pj(d1, d2) for all j ∈ {1, 2}; and

• f−1
d1,d2

(k) ⊆ P0(d1, d2) for all k ∈ [n] \ {1, 2}.
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Moreover, in comparison to the BR-correspondence fd defined in Eq. (18), we have P2(d1, d2) =
f−1
d2

(2), and P1(d1, d2) ∪ P0(d1, d2) = f−1
d2

(1). Fig. 5 presents an illustration of fd1,d2 . Our goal

is to find two numbers d1 and d2 such that {1, 2} ⊆ ER(Gd1,d2) for Gd1,d2 := (uL, fd1,d2), so
that the equilibrium strategies that form SSEs with actions 1 and 2 can be used as the second
reference pair.

We define several useful notions. For each j ∈ {1, 2}, let V L
d1,d2

(j) := maxx∈f−1
d1,d2

(j) u
L(x, j)

be the leader’s maximum attainable payoff in Pj . Let

d∗j = (M{1,2} − βj)/γj . (21)

So, d∗2 = d∗ as in Eq. (19). We can prove that P coincides with fd∗ for d1 = d∗1 and d2 = d∗2.
Moreover:

• P0(d
∗
1, d

∗
2) = M{1,2} and Pj(d

∗
1, d

∗
2) = f−1

d∗ (j) ̸= ∅ for j ∈ {1, 2}; and

• for all ⊙ ∈ {>,<,=} and j ∈ {1, 2}, uL(x, j)⊙M{1,2} ⇐⇒ aj · x⊙ d∗j .

We search for d1 < d∗1 and d2 < d∗2 to ensure that the payoffs of the second reference pair is
strictly smaller than M{1,2}. Before presenting the details, we first show how to learn h.

7.4.2 Computing h and Identifying Λ′′

Now that aj is known for all j ∈ [n]\Λ′, to apply Proposition 6.8 to find a cover, we only need to
provide a base function for {1, 2} and the set M{1,2}. It can be verified that the function ũFd∗ in
Eq. (18) and the region P0(d

∗
1, d

∗
2), with d∗1 and d∗2 in Eq. (21), fulfill these demands. In the special

case where {1, 2} does not admit a cover, we conclude that {1, 2} ⊆ Λ′′ according to Lemma 6.3,
whereby the first reference pair (x,y) also gives uL(x, 1) = uL(y, 2) = M{1,2} = M[n]. Hence,
by repeating this process for all edges in the non-dominance graph, we can identify Λ′′, as well
as a strategy xj such that uL(xj , j) = M[n] for every j ∈ Λ′′. The latter is necessary for the
construction in Eq. (9).

Proposition 7.3. Λ′′ can be computed in polynomial time. Moreover, for every j ∈ Λ′′, a
strategy xj such that uL(xj , j) = M[n] can be computed in polynomial time.

7.4.3 Pinning Down d1 and d2

We use a nested binary search to find d1 and d2 such that {1, 2} ⊆ ER(Gd1,d2). The following
lemma is key to this approach.

Lemma 7.4. There exists d′2 < d∗2 such that for all d2 ∈ [d′2, d
∗
2], {1, 2} ⊆ ER(Gd1,d2) for some

d1 < d∗1.

Hence, the nested binary search works as follows. It searches for a value of d2. Each time
it checks a candidate value of d2, it calls another binary search for a d1 such that {1, 2} ∈
ER(Gd1,d2). If no such d1 exists, it moves d2 to the middle point between d2 and d∗2 and
repeats, until a satisfying d2 is found. Lemma 7.4 indicates that this will always work when d2
is sufficiently close to d∗2.

We then establish a weaker version of Proposition 7.5 (see Proposition D.4), assuming that
ASSE can handle BR-correspondence queries. The proof that drops this assumption follows a
similar approach but requires explicitly constructing payoff matrices equivalent to fd1,d2 .

Proposition 7.5. x,y ∈ ∆m satisfying Eq. (∗∗) can be computed in polynomial time.

20



8 Learning under Other Oracles

Beyond the SSE oracle used so far, there can be other types of oracles. For example, some
oracles do not allow querying specific strategy profiles. When multiple SSEs exists, the oracles
output a random SSE. These alternative oracles model scenarios where the follower cannot
resolve the equilibrium selection problem according to their own desire. Here, we introduce two
such alternative oracles.

Definition 11 (Oracle AW1). Given a payoff matrix ũF , the oracle AW1 outputs a basic SSE
of the game (uL, ũF ) uniformly at random. An SSE (x, j) is a basic SSE of a game (uL, ũF ) if
x is an extreme point of B̃R

−1
(j), where B̃R

−1
is the BR-correspondence induced by ũF .

Definition 12 (Oracle AW2). Given a payoff matrix ũF , the oracle AW2 outputs each s ∈
SSE(uL, ũF ) uniformly at random.

The main difficulty of utilizing the alternative oracles arises when determining whether two
strategy profiles are both SSEs induced by the same payoff function. This ability to check the
equivalence of strategy profiles is crucial for, e.g., finding the whole set of M{j}. Nevertheless,
we show that we can still learn an equivalent payoff matrix with high probability under the
two oracles. As for the second alternative oracle, we introduce a condition on the leader’s
payoff matrix, called non-max-degenerate. That is, there does not exist j ∈ [n] such that
| argmaxi∈[m] u

L(i, j)| > 1. The same condition is also assumed in Birmpas et al. [2021] to
overcome an equilibrium selection issue.

Theorem 8.1. Given oracle AW1, in time polynomial in the bit size of uL and δ > 0, we can
learn a matrix ũL that achieves the same equivalences in Theorem 5.4 with probability at least
1− δ. The same holds for AW2 if uL is non-max-degenerate.

9 Conclusion

We developed computationally and sample-efficient algorithms to learn the leader’s incentives
from active queries on their optimal commitments. Our approach learns a payoff function that
is strategically equivalent to the true one, preserving both (1) the leader’s preference order
across strategy profiles and (2) their commitment behaviors in Stackelberg scenarios. The
learned information allows a strategic follower to induce an equilibrium that maximizes their
true utility.

For future work, we can explore alternative oracles, such as one that outputs a deterministic
equilibrium based on a specific tie-breaking rule. Investigating other learning settings could
also be interesting. For example, one can assume that the leader adopts a policy that maps
each follower type to a strategy to play. To infer the leader’s policy, however, it appears that
additional structural assumptions on the policy are necessary, as the learning task may easily
become intractable, otherwise.

Another interesting direction is to study counteractions when the leader notices one’s learn-
ing attempts. Beyond the mechanism design approach [Gan et al., 2019b], Nash equilibrium
may be a suitable concept when both players strategize. For example, consider such a payoff
misreporting game: each player reports a payoff matrix, and gets their true payoff for an SSE
of the induced game. Then, if we pick a follower type ũF that induces the optimal Stackelberg
equilibrium w.r.t. the leader’s true payoff uL, i.e., ũF ∈ argmaxũF ,s∈SSE(uL,ũF ) u

F (s), (also see
Corollary 5.5), then the strategy profile (uL, ũF ) forms a Nash equilibrium in the game (as
noted similarly by Chen et al. [2025]).
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A Omitted Proofs in Section 5

A.1 Proof of Proposition 5.1

Proposition 5.1. Given a matrix ũL that is equivalent to uL in ∆m × C for every non-
dominance component C, a matrix equivalent to uL in ∆m × ([n] \ Λ) can be computed in
time polynomial in the total bit size of ũL and uL.

We first prove the following lemma.

Lemma A.1. Suppose that ũL is equivalent to uL in ∆m ×
⋃k

ℓ=1Cℓ and ∆m ×Ck+1. Then the

following matrix ũ′ is equivalent to uL in ∆m ×
⋃k+1

ℓ=1 Cℓ: for every i ∈ [m] and j ∈ [n],

ũ′(i, j) =

{
ũL(i, j) if j ∈

⋃k
ℓ=1Cℓ

ũL(i, j)− Ǔk+1 + Ûk + σk if j ∈ Ck+1

(22)

where Ûk = maxi∈[m],j∈Ck
ũL(i, j) and Ǔk+1 = mini∈[m],j∈Ck+1

ũL(i, j).

Proof. Suppose that Eq. (22) holds for all i, j. We show that ũ′ is equivalent to uL in ∆m ×⋃k+1
ℓ=1 Cℓ.

Since ũ′ is the same as ũL for columns in
⋃k

ℓ=1Cℓ, and it is ũL with every entry in columns

in Ck+1 raised by a constant value, it preserves equivalences in ∆m ×
⋃k

ℓ=1Cℓ and ∆m ×Ck+1.
It remains to verify the equivalence across these two sets of columns, i.e.,

uL(s) > uL(s′) ⇐⇒ ũ′(s) > ũ′(s′)

and uL(s) < uL(s′) ⇐⇒ ũ′(s) < ũ′(s′)

for any two arbitrary strategy profiles s ∈ ∆m ×
⋃k

ℓ=1Cℓ and s′ ∈ ∆m × Ck+1. Indeed, ac-
cording to Eq. (8), it must be that uL(s) ≤ uL(s′) (note that maxi∈[m],j∈

⋃k
ℓ=1 Cℓ

uL(i, j) =

maxi∈[m],j∈Ck
uL(i, j)). So, it suffices to argue that uL(s) = uL(s′) ⇐⇒ ũ′(s) = ũ′(s′).

By Eq. (8), uL(s) = uL(s′) implies

uL(s) = max
i∈[m],j∈Ck

uL(i, j) = min
i∈[m],j∈Ck+1

uL(i, j) = uL(s′).

So σk = 0. Given the equivalence between ũL and uL in ∆m × Ck and ∆m × Ck+1, the above
equation further implies that ũL(s) = Ûk and ũL(s′) = Ǔk+1. According to the definition of ũ′, it
then follows that ũ′(s′) = ũL(s′)−Ǔk+1+Ûk = ũ′(s). Hence, uL(s) = uL(s′) =⇒ ũ′(s) = ũ′(s′).
The fact that uL(s) = uL(s′) ⇐= ũ′(s) = ũ′(s′) can be verified analogously.

Proof of Proposition 5.1. Given Lemma A.1, an induction on k = 1, . . . ,K − 1 yields a matrix
equivalent to uL in ∆m ×

⋃K
ℓ=1Cℓ ≡ ∆m × ([n] \Λ). Specifically, for the base case where k = 1,

the required equivalences in ∆m × C1 and ∆m × C2 are already achieved in Section 5.1.

A.2 Proof of Lemma 5.2

Lemma 5.2. Suppose that ũL is equivalent to uL in ∆m × ([n] \ Λ). Then ũ′v∗ is inducibility-
equivalent to uL. Moreover, for all s ∈ ∆m × ([n] \ Λ) such that ũL(s) = v:

(i) if v ≥ v∗, then s ∈ SSE(ũ′v) and, for all ũF ∈ Rm×n, s ∈ SSE(ũ′v, ũ
F ) =⇒ s ∈

SSE(uL, ũF );

(ii) if v < v∗, then s /∈ SSE(uL).

We first prove the following useful result.
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Lemma A.2. For every (x, j) ∈ ∆m× [n], v ∈ R, and ⊙ ∈ {>,=, <}, the following statements
hold:

(i) ũ′v∗(x, j)⊙ v∗ ⇐⇒ uL(x, j)⊙M[n]; and

(ii) if j ∈ Λ, then ũ′v(x, j)⊙ v ⇐⇒ uL(x, j)⊙M[n].

(iii) if Λ ̸= ∅, then mink∈[n] ũ
′
v(x, k) ≤ v.

Proof. We first prove (ii). Suppose that j ∈ Λ. Note that the construction in Eq. (9) ensures

uL(x, j)⊙ uL(x∗
j , j) ⇐⇒ ũ′v(x, j)⊙ ũ′v(x

∗
j , j).

Indeed, if j ∈ Λ′′, then ũ′v(x, j) is an affine transformation of uL(x, j) according to Eq. (9), so the
above holds readily; whereas when j ∈ Λ′, the definition of ãj gives x

∗
j ∈ argmaxx∈∆m

uL(x, j) =

argmaxx∈∆m
ũ′v(x, j), so the above holds, too. Now that uL(x∗

j , j) = M[n], it follows that

uL(x, j)⊙M[n] ⇐⇒ uL(x, j)⊙ uL(x∗
j , j) ⇐⇒ ũ′v(x, j)⊙ ũ′v(x

∗
j , j).

By further noting that ũ′v(x
∗
ℓ , ℓ) = v for all ℓ ∈ Λ according to Eq. (9), we get the desired result.

Now consider (i). Given (ii), it suffices to consider the case where j /∈ Λ.

• If v∗ = ϕ−1(M[n]), then the monotonicity of ϕ implies (i) by noting that

ϕ
(
ũ′v∗(x, j)

)
= ϕ

(
ũL(x, j)

)
= uL(x, j)

and ϕ(v∗) = M[n], where ũ′v∗(x, j) = ũL(x, j) because j /∈ Λ.

• If ϕ(v∗) ̸= M[n], according to the definition of v∗, we have uL(s) ̸= M[n] for all s ∈
∆m × ([n] \ Λ). It must be that uL(s) > M[n] because by definition uL(s) < M[n] is not

possible. Consequently, we have both uL(x, j) ≥ M[n] and

ũ′v∗(x, j) ≥ min
s∈∆m×([n]\Λ)

ũ′v∗(s) = v∗.

So (i) follows.

Finally, consider (iii). If Λ ̸= ∅, then according to the definitions of Λ′ and Λ′′, there must be
an action k ∈ Λ such that uL(x, k) ≤ M[n]. Applying (ii) gives ũ′v(x, k) ≤ v, so (iii) follows.

Proof of Lemma 5.2. If Λ = ∅, then ũ′v = ũL for any v, and ũL is an affine transformation of uL,
in which case all the results stated in the lemma follow immediately. Hence, in what follows,
we assume Λ ̸= ∅.

Inducibility Equivalence We first prove the inducibility-equivalence between ũ′v∗ and uL.
By Theorem 2.1, it suffices to prove that, for every s ∈ ∆m × [n],

uL(s) ≥ M[n] ⇐⇒ ũ′v∗(s) ≥ M̃∗
[n]

where M̃∗
[n]

:= maxx∈∆m minj∈[n] ũ
′
v∗(x, j) is the maximin value of ũ′v∗ . By Lemma A.2 (i), this

holds if M̃∗
[n] = v∗, or equivalently:

• minj∈[n] ũ
′
v∗(x, j) ≤ v∗ for all x ∈ ∆m, and

• minj∈[n] ũ
′
v∗(x, j) ≥ v∗ for some x ∈ ∆m.

For the first part follows by Lemma A.2 (iii). The second part is equivalent to: ũ′v∗(s) ≥ v∗ for
some s ∈ ∆m × [n]. Indeed, v∗ is defined in a way such that ũ′v∗(s) = v∗ always holds for some
s, so this follows immediately.
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Statement (i) Next, we prove (i). Suppose that v ≥ v∗ and ũL(s) = v. To see that s ∈
SSE(ũ′v), we invoke Theorem 2.1 and show that ũ′v(s) ≥ maxx∈∆m minj∈[n] ũ

′
v(x, j). Indeed,

since ũ′v(s) = v, this inequality follows immediately by Lemma A.2 (iii).
Now suppose that s ∈ SSE(ũ′v, ũ

F ). By definition, this means that

ũ′v(s) ≥ max
j∈B̃R(x)

ũ′v(x, j) for all x ∈ ∆m,

where B̃R denotes the BR-correspondence of ũF . We show that this implies

uL(s) ≥ max
j∈B̃R(x)

uL(x, j) for all x ∈ ∆m.

It suffices to show that for every (x, j) ∈ ∆m × [n]:

ũ′v(s) ≥ ũ′v(x, j) =⇒ uL(s) ≥ uL(x, j).

Consider the following two cases.

• If j /∈ Λ, then

ũ′v(s) ≥ ũ′v(x, j) =⇒ ϕ
(
ũ′v(s)

)
≥ ϕ

(
ũ′v(x, j)

)
=⇒ ϕ

(
ũL(s)

)
≥ ϕ

(
ũL(x, j)

)
=⇒ uL(s) ≥ uL(x, j),

which relies on the fact that ũ′v = ũL for both s and (x, j), as well as the monotonicity of
ϕ.

• If j ∈ Λ, then Lemma A.2 (ii) means that:

v ≥ ũ′v(x, j) =⇒ M[n] ≥ uL(x, j).

By further noting that
ũ′v(s) = ũL(s) = v

and
uL(s) = ϕ(v) ≥ ϕ(v∗) ≥ M[n],

the desired result then follows. Specifically, ϕ(v) ≥ ϕ(v∗) because v ≥ v∗; and ϕ(v∗) ≥ M[n]

because by definition:

– either v∗ = ϕ−1(M[n]), which implies ϕ(v∗) = M[n];

– or uL(s) ̸= M[n] for all s ∈ ∆m× ([n]\Λ), in which case it must be that uL(s) > M[n]

according to the definition of M[n], so ϕ(v∗) > M[n].

Therefore, uL(s) ≥ max
j∈B̃R(x)

uL(x, j) for all x ∈ ∆m. By definition, s ∈ SSE(uL, ũF ).

Statement (ii) Finally, consider (ii). Suppose that v < v∗. So, ũL(s) = v < v∗. This means

v∗ > ũL(s) ≥ min
s′∈∆m×([n]\Λ)

ũL(s′),

so according to the definition of v∗ it must be that v∗ = ϕ−1(M[n]). Consequently, v <
ϕ−1(M[n]). Since ϕ is strictly increasing, it follows that

ϕ(v) < ϕ
(
ϕ−1(M[n])

)
= M[n].

Moreover, since ũL(s) = v, by definition uL(s) = ϕ(v), which then gives uL(s) < M[n]. By

Theorem 2.1, s /∈ SSE(uL).
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A.3 Proof of Proposition 5.3

Proposition 5.3. Given a matrix ũL equivalent to uL in ∆m×([n]\Λ), a matrix ũ′ inducibility-
equivalent to uL can be computed in polynomial time (in the total bit size of ũL and uL).
Moreover, for every s ∈ SSE(uL), a follower type ũF such that s ∈ SSE(uL, ũF ) can be computed
in polynomial time.

Proof. If Λ = ∅, then ũL is readily inducibility-equivalent to uL. Hence, in what follows,
we consider the case where Λ ̸= ∅. By Lemma 5.2, it suffices to compute v∗ to obtain an
inducibility-equivalent matrix.

We use binary search to compute v∗. Indeed, according to the statements (i) and (ii) in
Lemma 5.2, we can efficiently determine whether v ≥ v∗ or v < v∗ for any given v as follows. We
construct ũ′v according to Eq. (9) and compute a follower type ũF that induces an arbitrarily
chosen strategy profile s such that ũL(s) = v, i.e., s ∈ SSE(ũ′v, ũ

F ). Given ũ′v, the follower
type ũF can be computed efficiently by using the algorithm proposed by Birmpas et al. [2021].
We then query ASSE to check if s ∈ SSE(uL, ũF ). By Lemma 5.2 (i) and (ii), the yes- and
no-answers imply v ≥ v∗ and v < v∗, respectively.

Now that we can determine whether v ≥ v∗ or v < v∗, we then use binary search to find
v∗. In particular, we can compute the exact value of v∗ by using a binary search based on
the Stern-Brocot tree [Graham et al., 1989]. Specifically, by Eq. (10), v∗ must be a rational
number as long as uL and ũL are rational. Moreover, it is straightforward that v∗ admits an
expression based on the solutions of LPs whose parameters are the entries of uL and ũL and
some constants. Hence, the bit size of v∗ can be bounded from above by a polynomial in the
total bit size of ũL and uL. The bound can be obtained given the assumption that a bound on
the bit size of uL is known. So, even though we cannot further distinguish whether v > v∗ or
v = v∗, we are able to determine when we should terminate the search on the Stern-Brocot tree,
whereby the value we obtain is exactly v∗. (Intuitively, we terminate the search when other
unexplored candidate values of v∗ in the Stern-Brocot tree cannot be represented with fewer
bits than the upper bound of the bit size of v∗.)

Finally, to compute a follower type to induce any s ∈ SSE(uL), if it is the case where
s ∈ ∆m × ([n] \ Λ), then by Lemma 5.2 (i) a follower type ũF such that s ∈ SSE(ũ′v, ũ

F ) is
readily one such that s ∈ SSE(uL, ũF ). Moreover, ũF can be computed by using the algorithm
proposed by Birmpas et al. [2021] as we mentioned above. If it is the case where s ∈ ∆m×Λ, we
observe that ũ′v is in fact equivalent to uL in ∆m×Λ. In this case, we can remove actions outside
of Λ, compute a follower type to induce s in this smaller game, and augment the obtained type
by setting the follower’s payoffs for actions in [n] \ Λ to a sufficiently small value (so that they
are strictly dominated) for a type that induces s in the original game.

A.4 Proof of Corollary 5.5

Corollary 5.5. With query access to ASSE, for any given payoff function uF ∈ Rm×n, one
can compute a strategy profile s∗ ∈ argmaxs∈SSE(uL) u

F (s) and a matrix ũF ∈ Rm×n such that

s∗ ∈ SSE(uL, ũF ) in time polynomial in the bit size of uL.

Proof. According to Theorem 5.4, SSE(uL) = SSE(ũL). Recall that Theorem 2.1 indicates that

SSE(ũL) can be characterized by the linear constraint uL(s) ≥ M̃[n] (where M̃[n] is the maximin

value of ũL). Hence, maxs∈SSE(uL) u
F (s) can be formulated as an LP and solved in polynomial

time. Finally, Theorem 5.4 also indicates that, once an optimal solution s∗ to the LP is known,
a matrix ũF that induces s∗ can be obtained efficiently.
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B Omitted Proofs in Section 6

B.1 Proof of Lemma 6.1

Lemma 6.1. Suppose that the following conditions hold for strategies x1, . . . ,xm∗−1 ∈ ∆m:

(i) uL(x1, n) = · · · = uL(xm∗−1, n);

(ii) xii > 0 for all i ∈ [m∗ − 1]; and

(iii) 1− xii =
∑m

k=m∗
xik for all i ∈ [m∗ − 1].

Then (−1/x1
1,−1/x2

2, · · · ,−1/xm∗−1
m∗−1, 0, · · · , 0) = γ · ∇uL(·, n) for some γ > 0.

Proof. Recall that by assumption uL(m∗, n) = · · · = uL(m,n). Hence,

uL(x, n) ≡
m∑
i=1

uL(i, n) · xi ≡
m∗−1∑
i=1

(
uL(i, n)− uL(m,n)

)
· xi + uL(m,n).

Given (iii), for each i ∈ [m∗ − 1], we have uL(xi, n) = (uL(i, n) − uL(m,n)) · xii + uL(m,n), so
(i) implies that:(

uL(1, n)− uL(m,n)
)
· x11 = · · · =

(
uL(m∗ − 1, n)− uL(m,n)

)
· xm∗−1

m∗−1 =: γ.

Clearly, γ > 0. Since xii > 0 according to (ii), we get that uL(x, n) ≡ γ · a · x + β, where
a = (−1/x1

1,−1/x2
2, · · · ,−1/xm∗−1

m∗−1, 0, · · · , 0) and β = uL(m,n).

B.2 Proof of Lemma 6.2

Lemma 6.2. Given a cover of set S ⊆ [n], a proper cover of S can be constructed in polynomial
time.

Proof. Suppose that µ is a cover of S. Consider the following matrix µ′:

µ′(i, j) =

{
µ(i, j) if j ∈ [n] \ S
W if j ∈ S

where W := mini,j∈[m]×[n]\S µ(i, j) − 1. We argue that µ′ is a proper cover of S. Indeed, it is
proper since by the above construction no action in S can be a best response to any x ∈ ∆m.
It suffices to prove that µ′ is a cover.

Let f and f ′ be the BR-correspondences of µ and µ′, respectively. Note that for all x ∈ MS ,
it must be that S ∩ f(x) = ∅. Indeed, if k ∈ S ∩ f(y) and y ∈ MS , we would then have

max
x∈MS

max
j∈f(x)

uL(x, j) ≥ max
j∈f(y)

uL(y, j) ≥ uL(y, k) ≥ min
j∈S

uL(y, j) = MS ,

contradicting the assumption that µ is a cover.
By construction, f ′(x) = f(x) if S ∩ f(x) = ∅. Hence, f ′(x) = f(x) for all x ∈ MS . It

follows that
max
x∈MS

max
j∈f ′(x)

uL(x, j) = max
x∈MS

max
j∈f(x)

uL(x, j) < MS .

Hence, µ′ is a cover of S.
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B.3 Proof of Lemma 6.3

Lemma 6.3. For any S ⊆ [n], a cover of S exists if and only if MS > M[n].

Proof. We first prove the necessity. Suppose a cover µ of S exists. According to the definition
of a cover, for any x ∈ MS , there exists j ∈ [n] \ S, such that uL(x, j) < MS . Thus, for all
x ∈ MS , we have

min
k∈[n]

uL(x, k) ≤ uL(x, j) < MS .

Meanwhile, for all x /∈ MS ,

min
k∈[n]

uL(x, k) ≤ min
k∈S

uL(x, k) < MS .

Thus, M[n] = maxx∈∆m minj∈[n] u
L(x, j) < MS .

Next, consider the sufficiency. Suppose that MS > M[n]. We show that a function µ

such that µ(i, j) = −uL(i, j) is a cover of S. Let f be the BR-correspondence of µ. By
construction, argmaxk∈[n] µ(x, k) = argmink∈[n] u

L(x, k) for any x ∈ ∆m, so j ∈ f(x) implies

that uL(x, j) = mink∈[n] u
L(x, k). It follows that

uL(x, j) = min
k∈[n]

uL(x, k) ≤ M[n] < MS

for all x ∈ ∆m. Thus, maxx∈MS
minj∈f(x) u

L(x, j) < MS , which completes the proof.

B.4 Proof of Lemma 6.6

Lemma 6.6. A vector g such that Ig = [m∗ − 1] can be computed in polynomial time.

Proof. Our approach is to start with an arbitrary g ∈ Rm∗−1
>0 , say g = (1, . . . , 1), and increase gi

if (xi, n) is not yet an SSE. Intuitively, increasing each gi will cause u
L(xi, n) to grow, so the hope

is that when uL(xi, n) is sufficiently large, (xi, n) yields as much utility as the other optimal
strategy profiles, hence forming an SSE. Notably, the value maxx∈f−1(n)\(∪i∈[m∗−1]Γi)u

L(x, n)
may also increase with gi, so there is the possibility that some (x, n) outside of

⋃
i∈[m∗−1] Γi

yields a higher utility for the leader than (xi, n), hence preventing (xi, n) from being an SSE.
Thanks to the design of ũFg , this possibility can be eliminated: as we prove in Lemma B.1,
x1, . . . ,xm∗−1 are always the leader’s optimal strategies in f−1

g (n).
We proceed as follows.

• If initially Ig = ∅, then we increase all the components of g to a sufficiently large number
N . We show in Lemma B.2 that there exists an N that results in at least one (xi, n) being
an SSE, and this N can be computed in polynomial time.

• Subsequently, if Ig ̸= ∅ but Ig ⊊ [m∗ − 1], we show in Lemma B.3 that, by increasing gi
for an arbitrary i /∈ Ig to an appropriate value g′i (while fixing all the other components
of g), the strategy profile (xi, n) will become a new SSE in addition to the existing ones.
Moreover, g′i can be computed in polynomial time.

Hence, by performing the above steps by at most m∗ − 1 times, we will find a g such that
Ig = [m∗ − 1].

We prove Lemmas B.1 to B.3 to complete the proof of Lemma 6.6.

Lemma B.1. For any g ∈ Rm∗−1
>0 , it holds that maxx∈f−1

g (n) u
L(x, n) = maxi∈[m∗−1] u

L(xi, n).
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Proof. We prove that every vertex v of f−1
g (n) lies in some Γi, i ∈ [m∗− 1]; in other words, v ∈

Γi∩f−1
g (n). Recall that xi ∈ argminx∈Γi∩f−1

g (n) xi. Hence, v ∈ Γi∩f−1
g (n) implies that xii ≤ vi,

and in turn, uL(v, n) ≤ uL(xi, n) according to Observation 6.5. Since maxx∈f−1
g (n) u

L(x, n) is

always attained at some vertex of f−1
g (n), the stated result then follows.

Pick an arbitrary vertex v of f−1
g (n). Since v ∈ Rm, it lies in m hyperplanes of f−1

g (n) and
is uniquely defined by them. By definition, f−1

g (n) is defined by the following linear constraints,
each corresponding to a hyperplane:

x1 + · · ·+ xm = 1 (23a)

xi ≥ 0 for all i ∈ [m] (23b)

ũFg (x, n) ≥ ũFg (x, j) for all j ∈ [n− 1] (23c)

W.l.o.g., by rearranging the rows and columns of the matrix, we can assume that the m hyper-
planes defining v correspond to the following coefficient matrix A, for some ℓ0, ℓ1, ℓ2, and k,
where we let µ̃(i, j) = W − µ(i, j) for all i, j.

ℓ0

{

ℓ1


ℓ2


k





1 · · · 1 1 · · · 1

1

. . .

1

1

. . .

1

g1 · · · gm∗−1 µ̃(m∗, 1) · · · µ̃(m, 1)
...

...
...

...

g1 · · · gm∗−1 µ̃(m∗, k) · · · µ̃(m, k)



}
Eq. (23a)
Eq. (23b)

Eq. (23c)

Note that ℓ0 is either 1 or 0 depending on whether Eq. (23a) is one of the m hyperplane or not,
so in general, we have ℓ1 + ℓ2 + k ≥ m− 1. We have A · v = b, where b is the vector consisting
of the corresponding constants in the inequalities in Eq. (23). Since v is uniquely defined by A,
we have rank (A) = m. In what follows, we let Ai:j denote the submatrix formed by the i-th to
the j-th rows of A.

We next argue that ℓ1 ≥ m∗−2 to complete the proof. According to Eq. (23b), this indicates
that for at least m∗ − 2 actions i ∈ [m∗ − 1], we have that vi = 0. In other words, vi > 0 for at
most one i ∈ [m∗ − 1], so by definition this means that v ∈ Γi for some i ∈ [m∗ − 1].

Suppose for the sake of contradiction that ℓ1 ≤ m∗−3. Hence, ℓ2+k ≥ m−1−ℓ1 ≥ m−m∗+2.
Consider the following submatrix of A:

U =

µ̃(m∗ + ℓ2, 1) · · · µ̃(m, 1)
...

...
µ̃(m∗ + ℓ2, k) · · · µ̃(m, k)


and the sub-vector v′ = (vm∗+ℓ2−1, . . . , vm) of v corresponding to the same columns. Hence, U
is a k-by-k′ matrix, with k′ ≤ k − 1.

By A · v = b we get that U · v′ = 1 · λ, where λ =
∑m∗−1

i=1 gi · vi. Note that v′ is a size-k′

vector, so it must be that rank
(
U 1⊤

)
≤ k′ ≤ k− 1 (otherwise, the system of linear equations

U · x = 1 · λ would have no solution). Note that via linear transformation, the submatrix
Am−k+1:m can be transformed into

(
O 1⊤ U

)
, where O denotes a k-by-(m∗ + ℓ2 − 2) matrix
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with all entries being 0. Hence, we get that

rank (Am−k+1:m) = rank
(
O 1⊤ U

)
≤ k − 1.

Consequently,

rank (A) ≤ rank (A1:m−k) + rank (Am−k+1:m) ≤ (m− k) + (k − 1) < m,

which contradicts the fact that rank (A) = m.

Lemma B.2. There exists N > 0, such that Ig ̸= ∅ if gi ≥ N for all i ∈ [m∗ − 1]. Moreover,
N can be computed in polynomial time.

Proof. Given Lemma B.1, it suffices to find a value N and prove that action n is an SSE response
of game (uL, ũFg ) if gi ≥ N for all i ∈ [m∗ − 1].

Let D = maxi,j,i′,j′ |uL(i, j)− uL(i′, j′)|. For every x ∈ ∆m, we have

uL(x, n) =

m∗−1∑
i=1

xi · uL(i, n) +

(
1−

m∗−1∑
i=1

xi

)
·M{n} ≥ M{n} −

(
m∗−1∑
i=1

xi

)
·D,

where we used the fact that uL(i, n) ≥ M{n} −D for all i.
Moreover, let

U = max
i,j

uL(i, j) and T = max
x∈M{n},j∈h(x)

uL(x, j),

where h is the BR-correspondence of µ. For every j ∈ [n− 1],

uL(x, j) =

m∗−1∑
i=1

xi · uL(i, j) +
m∑

i=m∗

xi · uL(i, j)

≤

(
m∗−1∑
i=1

xi

)
· U +

(
1−

m∗−1∑
i=1

xi

)
· T =

(
m∗−1∑
i=1

xi

)
· (U − T ) + T.

Recall that since µ is a cover of {n}, by definition T < M{n}. So if it holds that fg(x) = {n}
for every x such that

c :=
M{n} − T

D + U − T
<

m∗−1∑
i=1

xi,

then we know that nmust be an SSE response of (uL, ũFg ); indeed, for all y such that
∑m∗−1

i=1 yi ≤
c, this leads to

uL(y, j) ≤ T + c · (U − T ) = M{n} − c ·D ≤ max
x∈f−1

g (n)
uL(x, n)

for all j ∈ [n− 1]. It suffices to let

gi ≥ N :=
1− c

c
·
(
max
i,j

µ(i, j)−W

)
for every i ∈ [m∗ − 1] to ensure this, so any N ≥ N satisfies the condition in the statement of
this lemma.

To compute N , we can start from an arbitrary value N > 0 and g := (N, . . . , N). We query
the oracle ASSE to check if n is an SSE response of (uL, ũFg ). Double N and repeat the step if

it is not. This way, a value N ≥ N can be found in time log(N).
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Lemma B.3. Suppose that Ig ̸= ∅ and i ∈ [m∗ − 1] \ Ig. There exists g∗ > gi, such that
Ig∗ = Ig ∪ {i}, where g∗ = (g1, . . . , gi−1, g

∗, gi+1, . . . , gm∗−1). Moreover, g∗ can be computed in
polynomial time.

Proof. Let Vg := maxj∈[n]maxx∈f−1
g (j) u

L(x, j) denote the leader’s SSE payoff in (uL, ũFg ). We

show that the following g∗ satisfies the stated properties.

g∗ =
u∗ − (1− y∗i ) ·W

y∗i
, (24)

where u∗ and y∗ are an optimal solution to the following LP.

min
u,y∈∆m

u (25)

subject to y ∈ Γi (25a)

ũFg (y, j) ≤ u for all j ∈ [n− 1] (25b)

uL(y, n) = Vg (25c)

We demonstrate the following to complete the proof.

• g∗ is well-defined, i.e., LP (25) is feasible and has a bounded optimal value; moreover,
y∗i > 0 (Lemma B.4).

• g∗ > gi (Lemma B.6), as stated in the lemma. This is important because it ensures
that gℓ > 0 for all ℓ ∈ [m∗ − 1] throughout the process (as long as we initialize all the
components of g to be positive).

• Finally, let g′ := (g1, . . . , gi−1, g
′, gi+1, . . . , gm∗−1). Then g′ = g∗ is the only point where

Ig′ = Ig ∪ {i} (Lemma B.7). This means that we can use binary search to pin down g∗.
In particular, since g∗ is defined based on the solution to LP (25), its bit-size is bounded
by a polynomial in the size of the LP. Hence, we can find g∗ in polynomial time.

Note that we cannot solve LP (25) directly because it involves unknown parameters. More-
over, ũFg (·, j) in fact does not depend on g according to its definition in Eq. (15), and Lemmas B.6
and B.7 imply that Vg∗ = Vg remains unchanged after we update g to g∗, so repeat application
of Lemma B.3 as we do in the proof of Lemma 6.6 will not increase the bit size of LP (25).

This completes the proof of Lemma 6.6.

B.4.1 Lemmas Used in the Proof of Lemma B.3

In what follows, we let x′k denote the points defined with g′ instead of g in Eq. (14), k ∈ [m∗−1].
Similarly, we denote by x′′k and x∗k the points defined with g′′ and g∗, respectively.

Lemma B.4. LP (25) is feasible and bounded, and y∗i > 0.

Proof. Notice that LP (25) essentially computes maxj∈[n−1] ũ
F
g (y, j) with y satisfying Eq. (25a)

and Eq. (25c). Hence, its optimal value is bounded, and it is feasible if there exists y ∈ Γi such
that uL(y, n) = Vg. Note that for all y ∈ Γi, we have

uL(y, n) = yi · uL(i, n) + (1− yi) ·M{n}.

Let z be an arbitrary point such that
∑m

k=m∗
zk = 1 (hence z ∈ Γi).

• When y = z, we have uL(y, n) = M{n}.

• When y = xi, we have uL(y, n) = uL(xi, n) < Vg as (xi, n) is not an SSE by assumption.
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By definition (i.e., Eq. (14)), xi ∈ Γi. By assumption Ig ̸= ∅, so (xk, n) is an SSE response for
some k ∈ [m∗ − 1]. Hence, by definition,

Vg = uL(xk, n) < max
x∈Γi

uL(x, n) ≤ M{n},

where uL(xk, n) < maxx∈Γk
uL(x, n) follows by the fact that xkk > 0 (Observation 6.4) and

uL(x, n) decreases with xk when x is restricted in Γk (Observation 6.5). Therefore, by continuity,
there must exist y ∈ Γi such that uL(y, n) = Vg. Moreover, for all such y, yi > 0 as otherwise
uL(y, n) = M{n} > Vg.

Lemma B.5. uL(xi, n) increases strictly with gi.

Proof. Pick two arbitrary values g′, g′′ ∈ R such that g′ < g′′. Let

g′ = (g1, . . . , gi−1, g
′, gi+1, gm∗−1)

and g′′ = (g1, . . . , gi−1, g
′′, gi+1, gm∗−1).

Suppose for the sake of contradiction that uL(x′i, n) ≥ uL(x′′i, n).
By Observation 6.5, uL(x′i, n) ≥ uL(x′′i, n) implies that x′i

i ≤ x′′i
i. Moreover,

ũFg′(x′i, n) = g′ · x′i
i
+

m∑
k=m∗

x′k
i ·W

< g′′ · x′i
i
+

m∑
k=m∗

x′k
i ·W = ũFg′′(x′i, n), (26)

where we used the fact that x′i
i > 0 (Observation 6.4).

By definition, x′i ∈ f−1
g′ (n). So, ũFg′(x′i, n) ≥ ũFg′(x′i, j) for all j ∈ [n − 1]. Hence, using

Eq. (26), we have
ũFg′′(x′i, n) > ũFg′(x′i, n) ≥ ũFg′(x′i, j) = ũFg′′(x′i, j),

where the last equality holds since ũFg (·, j) does not depend on g by construction. This means

that ũFg′′(x, n) > ũFg′′(x, j) for x in a neighborhood N of x′i. Since x′i
i > 0, N ∩Γi must contain

a point x such that xi < x′i
i. We then establish the following contradictory transitions:

min
y∈Γi∩f−1

g′ (n)
yi ≤ xi < x′i

i
= min

y∈Γi∩f−1
g′ (n)

yi.

This completes the proof.

Lemma B.6. uL(x∗i, n) = Vg and g∗ > gi.

Proof. We have Vg > uL(xi, n) given that i /∈ Ig. Hence, once uL(x∗i, n) = Vg holds, we get
that uL(x∗i, n) = Vg > uL(xi, n), and in turn, g∗ > gi according to the monotonicity shown in
Lemma B.5. Hence, it suffices to prove uL(x∗i, n) = Vg.

By Eq. (25a) y∗ ∈ Γi, so we have

ũFg∗(y∗, n) = y∗i · g∗ + (1− y∗i ) ·W = u∗,

where the second transition follows by Eq. (24). Note that ũFg′(·, j) is not dependent on g′ for
all j ∈ [n− 1]. Hence, since y∗ and u∗ satisfy Eq. (25b), we have

ũFg∗(y∗, j) ≤ u∗, for all j ∈ [n− 1].
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As a result, ũFg∗(y∗, n) ≥ ũFg∗(y∗, j) for all j ∈ [n], which means y∗ ∈ f−1
g∗ (n). Hence, by Eq. (13),

x∗i
i ≤ y∗i , so Observation 6.5 implies that uL(x∗i, n) ≥ uL(y∗, n) = Vg, where uL(y∗, n) = Vg

follows by Eq. (25c).
To see that uL(x∗i, n) ≤ Vg, suppose for the sake of contradiction that uL(x∗i, n) > Vg.

Since uL(y∗, n) = Vg, using Observation 6.5 again, we have that x∗i
i < y∗i . Consider a point

z = λ · x∗i + (1− λ) · ei,

where λ ∈ [0, 1], and ei = (ei1, . . . , e
i
m) such that eii = 1 and eik = 0 for all k ̸= i. Since both

x∗i and ei are in Γi, we have z ∈ Γi. Moreover, since eii = 1 ≥ y∗i , there exists λ ∈ [0, 1) that
results in zi = y∗i and, in turn,

ũFg∗(z, n) = ũFg∗(y∗, n) = u∗, (27)

and
uL(z, n) = uL(y∗, n) = Vg. (28)

Meanwhile, note that for all j ∈ [n− 1], we have

ũFg∗(ei, n) = g∗ > 0 = ũFg∗(ei, j),

In addition, since x∗i ∈ f−1
g∗ (n), by definition, we have

ũFg∗(x∗i, n) ≥ ũFg∗(x∗i, j).

Consequently, now that λ < 1, we must have

ũFg∗(z, n) > ũFg∗(z, j).

Plugging into Eq. (27) gives ũFg∗(z, j) < u∗ for all j ∈ [n−1]. Pick u ∈ [maxj∈[n−1] ũ
F
g∗(z, j), u∗).

The fact that z ∈ Γi and uL(z, n) = Vg (i.e., Eq. (28)) we argued above implies that u and
z form a feasible solution to LP (25). The objective value of this solution, i.e., u, is strictly
smaller than u∗, which is a contradiction. This completes the proof of Lemma B.6.

Lemma B.7. Ig′ = Ig if g′ ∈ [gi, g
∗), Ig′ = {i} if g′ > g∗, and Ig′ = Ig ∪ {i} if g′ = g∗.

Proof. We first argue that the following results hold for any g′ ≥ gi.

(i) maxx∈f−1
g′ (j) u

L(x, j) ≤ maxx∈f−1
g (j) u

L(x, j), for all j ∈ [n− 1]; and

(ii) uL(x′k, n) = uL(xk, n), for all k ∈ [m∗ − 1] \ {i}.

In other words, (i) says that the leader’s payoffs for inducing a best response j ∈ [n − 1] does
not increase with gi; and (ii) says that the leader’s payoffs for (xk, n), k ̸= i, does not change
with gi.

To see (i), note that by construction, ũFg (x, j) does not depend on gi for all j ∈ [n − 1].

Moreover, now that g′ ≥ gi, ũ
F
g′(x, n) ≥ ũFg (x, n) for all x ∈ ∆m. Therefore, any leader strategy

x that does not induce j under ũFg does not induce j under ũFg′ , either. We have f−1
g′ (j) ⊆ f−1

g (j),
so (i) follows immediately.

To see (ii), note that ũFg (x, n) does not depend on gi when x is restricted in Γk, k ̸= i.

Hence, Γk ∩ f−1
g′ (n) = Γk ∩ f−1

g (n). By Observation 6.5, the statement then follows.
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We then proceed as follows. By assumption, Ig ̸= ∅. W.l.o.g., let us assume that 1 ∈ Ig.
Hence, uL(x1, n) = Vg. The statements (i) and (ii) then imply that

max
j∈[n−1]

max
x∈f−1

g′ (j)
uL(x, j) ≤ max

j∈[n−1]
max

x∈f−1
g (j)

uL(x, j)

≤ Vg

= uL(x1, n) = uL(x′1, n) ≤ max
x∈f−1

g′ (n)
uL(x, n),

where uL(x′1, n) ≤ maxx∈f−1
g′ (n) u

L(x, n) because x′1 ∈ f−1
g′ (n) given that 1 ∈ Ig. This means

that the following holds for the leader’s SSE utility in (uL, ũFg′):

Vg′ ≡ max
j∈[n]

max
x∈f−1

g′ (j)
uL(x, j) = max

x∈f−1
g′ (n)

uL(x, n).

Applying Lemma B.1 further gives

Vg′ = max
k∈[m∗−1]

uL(x′k, n).

Recall that

• uL(x′k, n) = uL(xk, n) ≤ Vg, for all k ∈ [m∗ − 1] \ {i};

• uL(x′1, n) = uL(x1, n) = Vg;

• uL(x∗i, n) = Vg (Lemma B.6) and uL(x′i, n) increases with g′i (Lemma B.5).

As a result, for all k ∈ Ig:

• when g′ ∈ [gi, g
∗), we have Vg′ = uL(x′k, n) > uL(x′i, n);

• when g′ = g∗, we have Vg′ = uL(x′k, n) = uL(x′i, n); and

• when g′ > g∗, we have Vg′ = uL(x′i, n) > uL(x′k, n).

Lemma B.7 then follows.

B.5 Proof of Proposition 6.8

Proposition 6.8. Suppose that S ⊆ [n], Q = {j ∈ [n] : M{j} = MS}, and the following are

given: 1) aj for all j ∈ [n] \ (S ∪Q), 2) a base function ũF of S, and 3) MS (given by linear
constraints). In polynomial time, we can either compute a cover of S or correctly decide that S
does not admit a cover.

Proof. We construct the following follower type. For every x ∈ ∆m,

µ(x, j) :=

{
0, if j ∈ S;

bj · x− cj , otherwise.
(29)

where for each j ∈ [n] \ S, (bj , cj) is a hyperplane such that for any x ∈ ∆m:

uL(x, j) ≥ MS ⇐⇒ bj · x ≤ cj . (30)

As we will show in Lemma B.8 below, whether µ is a cover of S can be decided efficiently, and
if not, then S does not admit any other cover, either. Intuitively, µ aims to bring down the
leader’s maximum attainable payoff in MS to below MS , so it needs to avoid responding with
actions j that make uL(x, j) ≥ MS . Ideally, we could just use µ = −uL to achieve this, but
since we do not know uL we use µ defined above, which functions similarly. The hyperplanes
(bj , cj) satisfying Eq. (30) can indeed be computed efficiently according to Lemma B.9.

We prove Lemmas B.8 and B.9 to complete the proof.
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Lemma B.8. It can be decided in polynomial time whether the payoff matrix µ defined in
Eq. (29) is a cover of S or not. Moreover, if µ is not a cover of S, then S does not admit any
other cover.

Proof. To decide whether µ is a cover of S, we check the satisfiability of the following linear
constraints (by assumption, MS is given as a set of linear constraints):

x ∈ MS

µ(x, j) ≤ 0 for all j ∈ [n]

This can be done in polynomial time. Specifically:

• If the constraints are satisfiable, then there exists y ∈ MS such that µ(y, j) ≤ 0 = µ(y, k)
for all j ∈ [n], k ∈ S; hence, k ∈ h(y), where h denotes the BR-correspondence of µ. It
follows that

max
x∈MS ,j∈h(x)

uL(x, j) ≥ uL(y, k) ≥ min
j∈S

uL(x, j) = MS .

By definition, this means that µ is not a cover of S.

• Conversely, suppose that the constraints are not satisfiable. Pick arbitrary x ∈ MS and
j ∈ h(x). Hence, µ(x, j) > 0, and according to the definition of µ, it must be that j /∈ S.
We then have µ(x, j) = bj · x − cj > 0, which implies that uL(x, j) < MS by Eq. (30).
Since the choice of x and k is arbitrary, we then have

max
x∈MS ,j∈h(x)

uL(x, j) < MS ,

so µ is a cover of S.

Next, consider the second part of the statement. Suppose that S admits a cover. We show
that µ must be a cover of it. According to the necessary condition demonstrated in Lemma 6.3,
we have MS > M[n]. Hence, for every x ∈ MS , minj∈[n] u

L(x, j) ≤ M[n] < MS , which means

that there exists j ∈ [n] \ S such that uL(x, j) < MS (note that minj∈S uL(x, j) = MS as
x ∈ MS). By Eq. (30), we then have bj · x > cj , which gives

µ(x, j) = bj · x− cj > 0.

This means that the linear constraints above are not satisfiable. Therefore, µ is a cover of S.

Lemma B.9. A hyperplane (bj , cj) satisfying Eq. (30) can be computed in polynomial time for
every j ∈ [n] \ S.

Proof. W.l.o.g., we show how to learn bn and cn, and we assume that n /∈ S. We first define
the following parameters:

ď := min
x∈MS

aj · x, d̂ := max
x∈MS

aj · x, and d∗ := (MS − βn)/γn.

One can easily verify that bn and cn defined as follows satisfy Eq. (30):

• If n ∈ Q, we let bn,i =

{
1, if uL(i, n) = M{n}

0, otherwise
, and cn = ď.

• If n /∈ Q, we let bn = an and cn =


ď− 1, if d∗ < ď;

d∗, if d∗ ∈ [ď, d̂];

d̂, if d∗ > d̂.
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According to the assumption stated in Proposition 6.8, an is given if n /∈ Q. Moreover, MS

is known, so ď and d̂ can be computed directly. However, we cannot compute d∗ yet since βn,
γn, and MS remain unknown. To complete the proof, we show how to learn d∗ next.

Recall that as stated in Proposition 6.8, a based function ũF of S is given. Define the
following payoff function parameterized by d ∈ R. For every x ∈ ∆m,

ũFd (x, j) :=

{
ũF (x, j), if j ∈ [n− 1];

ũF (x, k) + (d− bn · x), if j = n.
(31)

where we use an arbitrary k ∈ argmaxℓ∈[n−1] ũ
F (z, ℓ), defined with arbitrarily selected

z ∈ Z(d) := {x ∈ MS : bn · x = d} .

z is well-defined if d ∈ [ď, d̂].
We argue that n is the follower’s response in an SSE in the game (uL, ũFd ) if and only if

d ≥ d∗; and it is the only possible response if and only if d > d∗. This will enable us to use
binary search to compute d∗ (or find out that d∗ < ď or d∗ > d̂, in which case we only need ď
and d̂ to compute bn and cn as defined above).

Denote the BR-correspondences of ũFd and ũF as fd and f , respectively. Note the following
facts:

(i) fd(z) = f(z) ∪ {n}.

(ii) f−1
d (j) ⊆ f−1(j) for all j ∈ [n− 1].

(iii) maxx∈f−1
d (n) bn · x = d if d ∈ [ď, d̂].

(iv) uL(x, j) = MS for all x ∈ MS and j ∈ f(x).

Indeed, (i) can be verified by comparing ũFd (z, j), j ∈ [n − 1], with ũF (z, n). (ii) is due to
the fact that f−1(n) = ∅ according to the property of ũF as a base function.

To see (iii), note that n ∈ fd(z) implies that

max
x∈f−1

d (n)
bn · x ≥ bn · z = d.

Moreover, for all x ∈ f−1
d (n),

ũFd (x, n) ≥ max
j∈[n−1]

ũFd (x, j) = max
j∈[n−1]

ũF (x, j) ≥ ũF (x, k),

which implies bn · x ≤ d according to Eq. (31). Hence, maxx∈f−1
d

bn · x = d.

Finally, if (iv) did not hold, then uL(x, j) ̸= MS for some x ∈ MS and j ∈ f(x). Since ũF is
a base function, by definition, j ∈ f(x) ⊆ S. Moreover, x ∈ MS means mink∈S uL(x, k) = MS ,
so it must be that uL(x, j) > MS , which contradicts the definition of a base function.

Hence, (i)–(iv) hold, and we proceed as follows. For each j ∈ [n], define

V L
d (j) := max

x∈f−1
d (j)

uL(x, j),

which is the leader’s maximum attainable payoff for inducing the follower to respond with j.
According to (ii), for all j ∈ [n− 1], we have

V L
d (j) ≤ max

j′∈[n]
max

x∈f−1(j′)
uL(x, j′) = MS ,
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where the second transition is due to ũF being a base function. Moreover, pick an arbitrary
j ∈ f(z); by (i), (iv), and the fact that z ∈ MS , we get that

max
j′∈[n−1]

V L
d (j′) ≥ uL(x, j) = MS .

Therefore, maxj′∈[n−1] V
L
d (j′) = MS . By (iii), we also have V L

d (n) = γn · d+ βn if d ∈ [ď, d̂].
So,

Φ(d) := V L
d (n)− max

j∈[n−1]
V L
d (j) = γn · d+ βn −MS

is continuous and strictly increasing w.r.t. d. We can then use binary search and oracle ASSE

to pin down d∗ (or decide if d∗ < ď or d∗ > d̂): n is an SSE response of (uL, ũFd ) if and only if
d ≥ d∗; meanwhile, there exists an SSE response j ∈ [n− 1] if and only if d ≤ d∗.

This completes the proof of Proposition 6.8.

C Omitted Proofs in Section 7.3

C.1 Proof of Lemma 7.1

Lemma 7.1. V L
d∗(1) = V L

d∗(2) = M{1,2}. Moreover, 1 ∈ ER(Gd) if and only if d ≤ d∗, and
2 ∈ ER(Gd) if and only if d ≥ d∗.

Proof. By definition, we have 1 ∈ ER(Gd) ⇐⇒ V L
d (1) ≥ V L

d (2) and 2 ∈ ER(Gd) ⇐⇒ V L
d (2) ≥

V L
d (1). Moreover, it can be verified that V L

d (2) increases strictly with d (in the range where
∅ ≠ f−1

d (2) ⊊ ∆m), while V L
d (1) is non-increasing. So, it suffices to prove the first part of the

lemma: V L
d∗(1) = V L

d∗(2) = M{1,2}. Given Lemma C.1, we have V L
d∗(j) ≤ uL(s∗) = M{1,2} for

both j ∈ {1, 2}, so it further reduces to proving that V L
d∗(j) ≥ M{1,2}.

Indeed, the existence of y ∈ ∆m such that uL(y, 2) = M{1,2} demonstrated in Lemma C.2

readily implies that V L
d∗(2) ≥ M{1,2}. Now consider V L

d∗(1). Suppose for a contradiction that

V L
d∗(1) < M{1,2}. Pick any x ∈ ∆m such that a2 · x = d∗. We would get x ∈ f−1

d∗ (1) and hence

uL(x, 1) < M{1,2}. Pick another strategy y ∈ ∆m such that a2 · y < d∗ (which exists as argued
above), and consider z = λy + (1 − λ)x for a number λ ∈ (0, 1). It holds that a2 · z < d∗ for
all λ > 0, in which case uL(x, 2) < γ2 · d∗ + β2 = M{1,2}. Moreover, by continuity, when λ

is sufficiently small, it holds that uL(z, 1) < M{1,2}. As a result, maxj∈{1,2} u
L(z, j) < M{1,2},

which contradicts the definition of M{1,2}.
Now we prove Lemmas C.1 and C.2 to complete the proof.

Lemma C.1. uL(s∗) = M{1,2} for every s∗ ∈ SSE(Gd∗).

Proof. Consider the following two cases: 1) there exists x ∈ ∆m such that a2 · x > d∗, and 2)
there does not exist such an x. We show that in both cases

V L
d (j) ≤ M{1,2} (32)

for both j ∈ {1, 2} to complete the proof. Indeed, this will imply that M{1,2} is an upper

bound of the leader’s SSE payoff: uL(s∗) ≡ maxj∈{1,2} V
L
d (j) ≤ M{1,2} for any s∗ ∈ SSE(Gd∗).

Meanwhile, M{1,2} is also naturally a lower bound of the SSE payoff because:

M{1,2} ≡ max
x∈∆m

min
j∈{1,2}

uL(x, j) ≤ max
x∈∆m

max
j∈fd∗ (x)

uL(x, j) ≡ uL(s∗).

It then follows that uL(s∗) = M{1,2}.

Note that Eq. (32) holds automatically for j = 2: by definition a2 ·x ≤ d∗ for all x ∈ f−1
d∗ (2),

which means that uL(x, 2) ≤ γ2 · d∗ + β2 = M{1,2}. Hence, it remains to argue that Eq. (32)
holds for j = 1.
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• In Case 1, it must be that uL(x, 1) ≤ M{1,2} for all x ∈ ∆m such that a2 · x > d∗:

otherwise, we would find an x ∈ ∆m such that uL(x, 1) > M{1,2} and uL(x, 2) > M{1,2}
(with the latter implied by a2 · x > d∗), This leads to the following contradiction:

M{1,2} ≡ max
x′∈∆m

min
j∈{1,2}

uL(x′, j) ≥ min
j∈{1,2}

uL(x, j) > M{1,2}.

Since f−1
d (1) is the closure of {x ∈ ∆m : a2 ·x > d∗}, by continuity, we get that uL(x, 1) ≤

M{1,2} for all x ∈ f−1
d (1). This implies that uL(s∗) ≤ M{1,2} for every s∗ ∈ SSE(Gd∗).

• In Case 2, suppose for a contradiction that Eq. (32) does not hold for j = 1. The following
can be established:

M{1} ≡ max
x∈∆m

uL(x, 1) ≥ V L
d (1) > M{1,2} ≥ V L

d (2) = max
x∈∆m

uL(x, 2) ≡ M{2},

where we used the fact V L
d (2) ≤ M{1,2} as we argued above and the fact that f−1

d (2) = ∆m

in Case 2. This contradicts the assumption we made in this section that M{1} ≤ M{2}.

Lemma C.2. There exist x,y ∈ ∆m such that a2 · x < d∗ and a2 · y = d∗ (equivalently,
uL(x, 2) < M{1,2} and uL(y, 2) = M{1,2}).

Proof. First, we analyze the existence of x in the statement. Suppose for a contradiction that
a2 ·x ≥ d∗ for all x ∈ ∆m. Hence, f−1

d∗ (1) = ∆m and V L
d∗(1) = maxx∈∆m uL(x, 1). By definition,

V L
d∗(1) is at most the leader’s SSE payoff, so it follows by Lemma C.1 that

max
x∈∆m

uL(x, 1) ≤ M{1,2}. (33)

Note that a2 · x ≥ d∗ implies that uL(x, 2) ≥ γ2 · d∗ + β2 = M{1,2}. Now that a2 · x ≥ d∗ holds

for all x ∈ ∆m, so does uL(x, 2) ≥ M{1,2}; hence, minx∈∆m uL(x, 2) ≥ M{1,2}. Together with

Eq. (33), this gives maxx∈∆m uL(x, 1) ≤ minx∈∆m uL(x, 2). If this were true, then, contrary to
our assumption, there would be no edge between actions 1 and 2 in the non-dominance graph.

Next, we analyze the existence of y. Indeed, given the existence of x ∈ ∆m with a2 ·x < d∗,
if it were the case where a2 · y ̸= d∗ for all y ∈ ∆m, then we would have a2 · x < d∗ for all
x ∈ ∆m. This would imply that f−1

d∗ (2) = ∅ and hence the following contradiction:

M{1,2} ≡ max
x∈∆m

min
j∈{1,2}

uL(x, j) ≤ max
x∈∆m

uL(x, 2) = max
x∈f−1

d∗ (1)
uL(x, 2) < γ2 · d∗ + β2 = M{1,2}.

D Omitted Proofs in Section 7.4

To simplify the notation, we sometimes omit the dependencies on d1 and d2, and just write
P0, P1, and P2 when the parameters are clear from the context.) We first prove the following
lemmas that are used throughout the section.

Lemma D.1. Suppose that d1 ≤ d∗1, and d2 ≤ d∗2. For each j ∈ {1, 2}, if Pj(d1, d2) ̸= ∅, then
V L
d1,d2

(j) = γj · dj + βj.

Proof. We prove the equivalent statement: maxx∈Pj(d1,d2) aj · x = dj if Pj(d1, d2) ̸= ∅. We
present the proof with j = 1; the case where j = 2 can be replicated analogously. By definition,
a1 · x ≤ d1 for all x ∈ P1(d1, d2), so it suffices to show maxx∈P1(d1,d2) a1 · x ≥ d1.

Choose arbitrary x ∈ P1(d1, d2). By definition,

a1 · x ≤ d1, and a2 · x ≥ d2.
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By Lemma 7.1, there exists y ∈ ∆m such that

a1 · y = d∗1 ≥ d1, and a2 · y ≥ d∗2 ≥ d2.

Hence, there exists a convex combination z of x and y, such that a1 · z = d1 and a2 · z ≥ d2,
which means z ∈ P1(d1, d2). Hence, maxx∈P1(d1,d2) a1 · x ≥ a1 · z = d1.

Lemma D.2. There exist x1,x2 ∈ ∆m such that uL(x1, 1) = uL(x2, 2) < M{1,2}.

Proof. We first show that there exists x1 ∈ ∆m such that uL(x1, 1) < M{1,2}. Suppose for a
contradiction that

uL(x, 1) ≥ M{1,2} for all x ∈ ∆m (34)

Consider the following two cases: 1) uL(x, 1) ≥ uL(x, 2) for all x ∈ ∆m, and 2) uL(x′, 1) <
uL(x′, 2) for some x′ ∈ ∆m.

In Case 1, by definition we get that M{1,2} = maxx∈∆m uL(x, 2). Hence, Eq. (34) implies

that minx∈∆m uL(x, 1) ≥ M{1,2} = maxx∈∆m uL(x, 2). So, action 1 obviously dominates action
2, but this contradicts the fact that there is an edge between 1 and 2 in the non-dominance
graph.

Now consider Case 2. By definition, M{1,2} ≥ minj∈{1,2} u
L(x′, j) = uL(x′, 1). Given

Eq. (34), it must be that uL(x′, 1) = M{1,2}. Recall that a1 ̸= 0, so there exists y′ ∈ ∆m

such that uL(y′, 1) > uL(x′, 1) = M{1,2} (note that uL(y′, 1) < uL(x′, 1) is not possible because
of Eq. (34)).

Consider a convex combination of x′ and y′, that is, z = λx′ + (1− λ)y′ for λ ∈ (0, 1). Now
that uL(y′, 1) > M{1,2} and uL(x′, 1) = M{1,2}, it holds automatically that

uL(z, 1) > M{1,2}.

Moreover, by assumption we have uL(x′, 1) < uL(x′, 2), so by continuity when λ is sufficiently
close to 1, the same must also hold for z, i.e.,

uL(z, 1) < uL(z, 2).

Consequently, the following contradiction arises: M{1,2} ≥ minj∈{1,2} u
L(z, j) = uL(z, 1) >

M{1,2}. We then conclude that there exists x1 ∈ ∆m such that uL(x1, 1) < M{1,2}.
Replicating the same argument, we can prove that there also exists x2 ∈ ∆m such that

uL(x2, 1) < M{1,2} (note that the argument only relies on conditions that hold for both actions

1 and 2). So it remains to prove that uL(x1, 1) = uL(x2, 2) can also be ensured.
Indeed, recall that it holds for the first reference pair we found in Section 7.3, say x∗

1 and
x∗
2, that u

L(x∗
1, 1) = uL(x∗

2, 2) = M{1,2}. Suppose w.l.o.g. that uL(x1, 1) ≤ uL(x2, 2). Then by
continuity there must be a point x′

1 ∈ ∆m in the line segment between x1 and x∗
1 such that

uL(x′
1, 1) = uL(x2, 2). This completes the proof.

D.1 Proof of Lemma 7.4

Lemma 7.4. There exists d′2 < d∗2 such that for all d2 ∈ [d′2, d
∗
2], {1, 2} ⊆ ER(Gd1,d2) for some

d1 < d∗1.

We first prove the following result, and we will argue that it is sufficient for proving
Lemma 7.4.

Lemma D.3. There exist x1,x2 ∈ ∆m such that uL(x1, 1) = uL(x2, 2) < M{1,2} and a2 · x1 ≥
a2 · x2.
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Proof. Pick two points x1,x2 ∈ ∆m such that uL(x1, 1) = uL(x2, 2) < M{1,2}, which always
exist according to Lemma D.2. If it holds in addition that a2 ·x1 ≥ a2 ·x2 then we are done. So
in what follows we assume that a2 ·x1 < a2 ·x2. Equivalently, this means uL(x1, 2) < uL(x2, 2),
so we can establish

uL(x1, 2) < uL(x2, 2) = uL(x1, 1).

By assumption, action 1 does not strongly dominate action 2. Now that uL(x1, 2) < uL(x1, 1),
according to the definition of the strong dominance there must be a point y ∈ ∆m such that
uL(y, 1) < uL(y, 2). This further means uL(y, 1) ≤ M{1,2} (otherwise, the following contradic-

tion would arise M{1,2} ≥ minj∈{1,2} u
L(y, j) = uL(y, 1) > M{1,2}).

In summary, we have argued that the following conditions hold:

uL(y, 1) < uL(y, 2) and uL(y, 1) ≤ M{1,2};

uL(x1, 1) > uL(x1, 2) and uL(x1, 1) < M{1,2}.

So, by continuity, there must be a point z ∈ ∆m that lies between x1 and y such that

uL(z, 1) = uL(z, 2) < M{1,2}.

Trivially, a2 · z ≥ a2 · z, so the pair (z, z) satisfy the condition stated in the lemma.

Proof of Lemma 7.4. By Lemma D.3, there exist x1,x2 ∈ ∆m such that uL(x1, 1) = uL(x2, 2) <
M{1,2} and a2 · x1 ≥ a2 · x2. Letting d′2 = a2 · x2 gives d′2 < d∗2 as we analyzed in Section 7.4.1.
Hence, for any arbitrary d2 ∈ [d′2, d

∗
2], there is a unique number ξ ∈ [0, 1] such that d2 =

ξ · d′2 + (1− ξ) · d∗2. Let

d1 = ξ · d′1 + (1− ξ) · d∗1 and yj = ξ · xj + (1− ξ) · x∗
j ,

where we let x∗
1 and x∗

2 be the first reference pair we found in Section 7.3. By noting that
(y1,y2) is a convex combination of (x1,x2) and (x∗

1,x
∗
2), one can verify that yj ∈ Pj(d1, d2)

for all j ∈ {1, 2}. Moreover, according to Lemma D.1, we have V L
d1,d2

(1) = V L
d1,d2

(2). If these
two values also outperform the maximum attainable payoffs for inducing other responses of the
follower, i.e., V L

d1,d2
(1) ≥ V L

d1,d2
(k) for all k ∈ [n] \ {1, 2}, then it will follow immediately that

{1, 2} ⊆ ER(Gd1,d2) and Lemma 7.4 will hold given the arbitrary choice of d2.
Indeed, this can be ensured as follows. By construction, V L

d1,d2
(1) ≥ V L

d′1,d
′
2
(1) and V L

d1,d2
(k) ≤

V L
d′1,d

′
2
(k), so it suffices to ensure that V L

d′1,d
′
2
(1) ≥ maxk∈[n]\{1,2} V

L
d′1,d

′
2
(k). This holds strictly if

d′1 and d′2 are sufficiently close to d∗1 and d∗2 because the values on the two sides of the inequality
change continuously with d′1 and d′2 and, given that h is a cover of {1, 2}, we have

V L
d∗1,d

∗
2
(1) = M{1,2} > max

x∈M{1,2}
max

k∈h−1(x)
uL(x, k) = max

k∈[n]\{1,2}
V L
d∗1,d

∗
2
(k).

Therefore, if V L
d′1,d

′
2
(1) ≥ maxk∈[n]\{1,2} V

L
d′1,d

′
2
(k) does not hold, we can substitute each xj with

ξ′ ·xj+(1−ξ′) ·x∗
j for some ξ′ sufficiently close to 1 and repeat the argument above, whereby all

the initial conditions still hold and, additionally, V L
d′1,d

′
2
(1) ≥ maxk∈[n]\{1,2} V

L
d′1,d

′
2
(k). The proof

is then complete.

D.2 Weaker Version of Proposition 7.5

Proposition D.4. Assume that ASSE can handle BR-correspondence queries. A pair of strate-
gies x,y ∈ ∆m such that uL(x, 1) = uL(y, 2) < M{1,2} can be computed in polynomial time.

39



Proof. Given Lemma 7.4, we use a nested binary search to find two values d1 < d∗1 and
d2 < d∗2 such that {1, 2} ⊆ ER(Gd1,d2). Once these values are found, any arbitrary x ∈
argmaxx′∈P1(d1,d2) a1 · x′ and y ∈ argmaxy′∈P2(d1,d2) a1 · y′ then form a reference pair such

that uL(x, 1) = uL(y, 2). Moreover, uL(x, 1) < M{1,2} because d1 < d∗1.
We start by letting d2 = minx∈∆m a2 · x, which is the smallest possible value of d2 (any

value smaller than this would lead to an empty P2). Using binary search, we aim to find in the
range (−∞, d∗1) a value of d1 such that {1, 2} ⊆ ER(Gd1,d2). For every value of d1 we try, we call
the ER oracle AER to check if actions 1 and 2 are in ER(Gd1,d2). Recall that, by construction,
V L
d1,d2

(2) do not change with d1, whereas V L
d1,d2

(1) increases with d1 (when P1(d1, d2) ̸= ∅)
and V L

d1,d2
(k) is non-increasing w.r.t. d1. Hence, for any d2, if there is either no or a unique

satisfying d1 (that makes {1, 2} ⊆ ER(Gd1,d2)). The unique point is also the smallest one that
makes 1 ∈ ER(Gd1,d2).

Consequently, if 1 /∈ ER(Gd1,d2) (resp. 1 ∈ ER(Gd1,d2)), we know that if a satisfying value
of d1 exists, it must be larger (resp. smaller) than the current value. If the smallest d1 with
1 ∈ ER(Gd1,d2) also gives 2 ∈ ER(Gd1,d2), then we are done. Otherwise, we can conclude that no
satisfying d1 exists, in which case we decrease d2 by moving it to (d2 + d∗2)/2. By Lemma 7.4,
when d2 is sufficiently close to d∗2, a satisfying d1 always exists. It then remains to argue that
the nested binary search process always terminates in polynomial time.

Time Complexity We show that there exists a d2 that satisfies the condition stated in
Lemma 7.4 and its bit size is bounded by a polynomial in the bit size of uL. This will then
indicate that after trying at most polynomially many values of d2, the binary search will find
a satisfying value (note that any value ). We will later also show a similar argument for d1 to
complete the analysis.

We first characterize a value of d2 that satisfies V L
d1,d2

(1) = V L
d1,d2

(2) for some d1, as a
necessary condition of {1, 2} ⊆ ER(Gd1,d2). This value is characterized by the following LP:

min
d1,d2,x1,x2

d2 (35)

subject to xj ∈ Pj(d1, d2) for j ∈ {1, 2} (35a)

dj ≤ d∗j for j ∈ {1, 2} (35b)

γ1 · d1 + β1 = γ2 · d2 + β2 (35c)

Namely, Eq. (35a) ensures that Pj(d1, d2) ̸= ∅, so by Lemma D.1, Eqs. (35b) and (35c) then
ensure that V L

d1,d2
(1) = V L

d1,d2
(2). According to standard results on linear programming, the bit

size of the optimal value of the LP is at most a polynomial in the bit size of its parameters. The
bit size of each parameter is also bounded by polynomials in the bit size of uL (in particular,
the bit sizes of γj and βj are bounded given that the bit size of aj is bounded). Let the optimal
value be d̄2. It must be that d̄2 < d∗2 according to Lemma 7.4. Moreover, one can verify by
using a similar argument to Lemma 7.4 that for any d2 ∈ [d̄2, d

∗
2] there exists d1 < d∗1 such that

V L
d1,d2

(1) = V L
d1,d2

(2) (though this is not a direct corollary of Lemma 7.4).

Based on d̄2, we further characterize a value of d2 that satisfy {1, 2} ⊆ ER(Gd1,d2) for some
d1, by using the following set of LPs. Each of these LPs corresponds to an action k ∈ [n]\{1, 2}
and imposes constraints Eqs. (36b) to (36d) in addition to those in LP (35).

max
d1,d2,x1,x2,xk

d2 (36)

subject to Eqs. (35a) to (35c) (36a)

d2 ≥ d̄2 (36b)

xk ∈ P0(d1, d2) ∩ h−1(k) (36c)

γ1 · d1 + β1 ≤ uL(xk, k) (36d)
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It shall be clear shortly how these additional constraints contribute to our analysis. Let dk2 be

the optimal value of the LP corresponding to action k (let d
(k)
2 = minx∈∆m a2 · x if the LP is

infeasible). Moreover, let d′2 =
(
maxk∈[n]\{1,2} d

k
2 + d∗2

)
/2. It must be that dk2 < d∗2 because one

can verify that: 1) any d2 > d∗2 would lead to d1 > d∗1 because of Eq. (35c), which further leads
to P0(d1, d2) = ∅; and 2) d2 = d∗2 gives γ1 · d1 + β1 = V L

d1,d2
(2) > uL(xk, k) because h is a cover.

Consequently, d′2 < d∗2.
According to the same argument for d̄2, the bit size of d′2 is bounded by a polynomial. We

show that d′2 satisfies the condition stated in Lemma 7.4 to finish the proof. Consider any
arbitrary value d2 > d′2. Since d′2 > dk2, we have d2 > dk2, so by definition d2 is strictly larger
than the optimal value of LP (36). This means that if we fix the variable d2 in LP (36) to this
value, no values of the other variables can make the constraints of the LP hold simultaneously.
Since d2 ∈ [d̄2, d

∗
2], according to our analysis above, Eqs. (36a) and (36b) are satisfiable with

some values of d1, x1, and x2. So it must be that Eqs. (36c) and (36d) are not satisfiable.
In other words, γ1 · d1 + β1 > uL(xk, k) for any xk ∈ P0(d1, d2) ∩ h−1(k) and any d1 that
satisfies Eqs. (36a) and (36b). Hence, any such d1 gives V L

d1,d2
(1) = V L

d1,d2
(2) > V L

d1,d2
(k) for all

k ∈ [n] \ {1, 2}.

D.3 Querying by Using Payoff Matrices

We show how to design payoff matrices to replace the BR-correspondences we used to prove
Proposition D.4, thereby proving the stronger result Proposition 7.5. We define the following
payoff matrix, which is parameterized by two numbers d1 < d∗1 and d2 < d∗2, too. We will show
that the BR-correspondence of this payoff matrix functions the same way as fd1,d2 defined in
Eq. (20).

For every x ∈ ∆m and j ∈ [n], let

ũFd1,d2(x, j) :=

{
bj · (x− zj) + cj , if j ∈ {1, 2};
µ(x, j), if j ∈ [n] \ {1, 2}.

(37)

where µ is an arbitrary proper cover of {1, 2}, and bj , cj ∈ R and zj ∈ ∆m are defined as
follows based on d1 and d2.

8

• First, for each j ∈ {1, 2}, using d̄j := (dj + d∗j )/2, we define:

Z1 :=
{
x ∈ ∆m : a1 · x = d̄1 and a2 · x ≥ d̄2

}
, (38)

and Z2 :=
{
x ∈ ∆m : a2 · x = d̄2

}
, (39)

• Let K1 = [n]\{1, 2} and K2 = [n]\{2}. For each j ∈ {1, 2}, we pick arbitrary zj ∈ Zj

and

kj ∈ argmax
k∈Kj

ũFd1,d2(zj , k), (40)

and let cj = ũFd1,d2(zj , kj). Note that according to Eq. (37), ũFd1,d2(z1, k) = µ(z1, k)

for all k ∈ K1, so kj is well-defined even though the complete definition of ũFd1,d2 relies
on kj .

• Next, let

b1 := gk1 −
6 ·W1

d∗1 − d1
· a1, (41)
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1

2

µ

a2 · x = d2

a1 · x = d1

a2 · x = d̄2

a1 · x = d̄1

z2

z1

Figure 6: Illustration of f̃d1,d2 . The region labeled µ is
⋃

k∈[n]\{1,2} f̃
−1
d1,d2

(k). The dotted lines

are the boundaries of f−1
d1,d2

(j) and f−1
d̄1,d̄2

(j). Recall that f−1
d1,d2

(j) = Pj(d1, d2) and f−1
d̄1,d̄2

(j) =

Pj(d̄1, d̄2).

where we use Wj := 1 + maxi∈[m],k∈Kj
ũFd1,d2(i, k) − mini∈[m],k∈Kj

ũFd1,d2(i, k) for j ∈
{1, 2}, which is a value larger than the maximum gap between the payoff parameters;
and gk is the gradient of ũFd1,d2(·, k) for each k ∈ [n]:

gk :=
(
ũFd1,d2(1, k), . . . , ũ

F
d1,d2(m, k)

)
.

We extend the notation in Section 7.4.1 to the above defined utility function: let f̃d1,d2 be the

BR-correspondence of ũFd1,d2 , let G̃d1,d2 := (uL, ũFd1,d2), and let Ṽ L
d1,d2

(j) := maxx∈f̃−1
d1,d2

(j) u
L(x, j).

We make several observations about f̃d1,d2 in the following lemma, where we also compare it
with the BR-correspondence fd1,d2 defined in Section 7.4.1. Fig. 6 provides an illustration of
these observations and the general structure of f̃d1,d2 . Note that d̄j , Zj , zj , and kj are all
functions of d1 and d2, but for notational simplicity, we will often omit their dependencies on
d1 and d2; the exact values of d1 and d2 that define them should be clear from the context.

Lemma D.5. Suppose that d1 ≤ d∗1 and d2 ≤ d∗2. The following statements hold for every
j ∈ {1, 2} and k ∈ [n] \ {1, 2}:

(i)
⋃

j∈{1,2} f
−1
d1,d2

(j) ⊆
⋃

j∈{1,2} f̃
−1
d1,d2

(j);

(ii) f̃−1
d1,d2

(k) ⊆ f−1
d1,d2

(k); and

(iii) if Zj ̸= ∅, then zj ∈ f̃−1
d1,d2

(j) and Ṽ L
d1,d2

(j) = γj · d̄j + βj.

Proof. We first prove the following additional statement:

aj · x ≤ d̄j for all x ∈ f̃−1
d1,d2

(j). (42)

Suppose for the sake of contradiction that aj · x > d̄j . We argue that x /∈ f̃−1
d1,d2

(j). Indeed,

since zj ∈ Zj , by definition aj · zj = d̄j , so aj · (x− zj) > 0. It follows that

ũFd1,d2(x, j) = bj · (x− zj) + cj

= gkj · (x− zj)−
6 ·Wj

d∗j − dj
· aj · (x− zj) + cj

< gkj · (x− zj) + cj

= ũFd1,d2(x, kj)− ũFd1,d2(zj , kj) + cj

= ũFd1,d2(x, kj), (43)

where we used the definition that ũFd1,d2(zj , kj) = cj . Hence, x /∈ f̃−1
d1,d2

(j), and Eq. (42) follows.

8We omit the dependencies of these parameters on d1 and d2 in the notation to simplify the presentation.
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(i) Pick arbitrary j ∈ {1, 2} and x ∈ fd1,d2(j) ≡ Pj(d1, d2). It suffices to argue that
ũFd1,d2(x, j) > ũFd1,d2(x, k) for all k ∈ [n] \ {1, 2}. Indeed, since x ∈ Pj(d1, d2), by definition
aj · x ≤ dj . Hence,

ũFd1,d2(x, j) = bj · (x− zj) + cj

= gkj · (x− zj)−
4 ·Wj

d∗j − dj
· aj · (x− zj) + cj

> −2 ·Wj −
6 ·Wj

d∗j − dj
· (dj − d̄j) + cj

= Wj + cj

≥ ũFd1,d2(x, k), (44)

where we used the fact that

gkj · (x− zj) ≥ min
x′∈∆m

gkj · x
′ − max

x′∈∆m

gkj · x
′ > −Wj .

(ii) Consider the BR-correspondence h : ∆m → 2[n]\{1,2} of µ. By construction,

f−1
d1,d2

(k) = h−1(k) ∩ P0(d1, d2) and f̃−1
d1,d2

(k) = h−1(k) ∩ P̃0(d1, d2),

where

P̃0(d1, d2) :=

{
x ∈ ∆m : max

k∈[n]\{1,2}
ũFd1,d2(x, k) ≥ max

j∈{1,2}
ũFd1,d2(x, j)

}
.

We argue that P̃0(d1, d2) ⊆ P0(d1, d2) to complete the proof. Indeed,

P0(d1, d2) = cl

∆m \
⋃

j∈{1,2}

Pj(d1, d2)

 ,

where cl(·) denotes the closure of a set. Since Eqs. (43) and (44) are strictly satisfied, We also
have

P̃0(d1, d2) = cl

∆m \
⋃

j∈{1,2}

f̃−1
d1,d2

(j)

 .

According to (i) we proved above,
⋃

j∈{1,2} Pj(d1, d2) ⊆
⋃

j∈{1,2} f̃
−1
d1,d2

(j) (note that Pj(d1, d2) =

fd1,d2(j)). Hence, P̃0(d1, d2) ⊆ P0(d1, d2), and (ii) follows.

(iii) It suffices to prove that zj ∈ f̃−1
d1,d2

(j) for the following reasons. First, since aj · zj = d̄j ,

zj ∈ f̃−1
d1,d2

(j) implies that Ṽ L
d1,d2

(j) ≥ uL(zj , j) = γj · d̄j + βj . Second, according to Eq. (42) we

proved above, Ṽ L
d1,d2

(j) ≤ γj · d̄j + βj . Hence, Ṽ
L
d1,d2

(j) = γj · d̄j + βj .

Next, we prove zj ∈ f̃−1
d1,d2

(j) to complete the proof. According to Eq. (37),

ũFd1,d2(zj , j) = cj = ũFd1,d2(zj , kj) = max
k∈Kj

ũFd1,d2(zj , k). (45)

Since K2 = [n] \ {1}, this immediately implies that ũFd1,d2(z2, 2) ≥ ũFd1,d2(z2, k) for all k ∈ [n].

So, z2 ∈ f̃−1
d1,d2

(2).

To argue that z1 ∈ f̃−1
d1,d2

(1), since K1 = [n] \ {1, 2}, we need to prove in addition that

ũFd1,d2(z1, 1) ≥ ũFd1,d2(z1, 2). Indeed, since z2 ∈ Z2, by definition a2 · z1 ≥ d̄2. So, applying

Eq. (43) gives ũFd1,d2(z1, 2) ≤ ũFd1,d2(z1, k2). Since k2 ∈ K1 ∪ {1}, Eq. (45) then implies

ũFd1,d2(z1, 1) ≥ ũFd1,d2(z1, k2) ≥ ũFd1,d2(z1, 2)

Consequently, ũFd1,d2(z1, 1) ≥ ũFd1,d2(z1, k) for all k ∈ [n], so z1 ∈ f̃−1
d1,d2

(1).
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With the above observations, it becomes clear that the values of d1 and d2 that result in
{1, 2} ⊆ ER(Gd1,d2) (when we derive the weaker result) also lead to {1, 2} ⊆ ER(G̃d1,d2). We
can then easily generalize the proof of Proposition D.4 to prove Proposition 7.5.

Proposition 7.5. x,y ∈ ∆m satisfying Eq. (∗∗) can be computed in polynomial time.

Proof Sketch. Similarly to the approach to proving Proposition D.4, we use a nested binary
search to find two values d1 < d∗1 and d2 < d∗2 such that {1, 2} ⊆ ER(G̃d1,d2). This will yield a
reference pair such that uL(x, 1) = uL(y, 2) < M{1,2}.

The key is to ensure that there indeed exist the desired d1 and d2, and their bit size is
bounded polynomially. We argue that {1, 2} ⊆ ER(Gd1,d2) =⇒ {1, 2} ⊆ ER(G̃d1,d2), so
Lemma 7.4 readily implies the desired result.

Suppose that {1, 2} ⊆ ER(Gd1,d2). Lemma D.5 (ii) implies that the best response regions of

all actions k /∈ {1, 2} are smaller compared with f−1
d1,d2

(k), which means Ṽ L
d1,d2

(k) ≤ V L
d1,d2

(k).
We then argue the following to complete the proof:

Ṽ L
d1,d2(1) = Ṽ L

d1,d2(2) ≥ V L
d1,d2(1).

Indeed, now that 1 ∈ ER(Gd1,d2), it must be that V L
d1,d2

(1) ≥ V L
d1,d2

(k) for all k ∈ [n]. So once

the above condition holds, we can establish Ṽ L
d1,d2

(1) = Ṽ L
d1,d2

(2) ≥ Ṽ L
d1,d2

(k) for all k ∈ [n],

which means {1, 2} ⊆ ER(G̃d1,d2).
Indeed, applying Lemma 7.4 and Lemma D.5 (i), one can verify that {1, 2} ⊆ ER(Gd̄1,d̄2

).
So, Pj(d̄1, d̄2) ̸= ∅ for j ∈ {1, 2}. By further noting that Zj(d1, d2) = argmaxx∈Pj(d̄1,d̄2)

aj · x,
we get that Zj(d1, d2) ̸= ∅. So, Lemma D.5 (iii) implies that Ṽ L

d1,d2
(j) = γj · d̄j + βj . It follows

that

Ṽ L
d1,d2(j) = γj · d̄j + βj ≥ γj · dj + βj = V L

d1,d2(j), (46)

where γj · dj + βj = V L
d1,d2

(j) follows by Lemma D.1. Moreover, since d̄j = (dj + d∗j )/2, we have

Ṽ L
d1,d2(j) =

(γj · dj + βj) + (γj · d∗j + βj)

2
=

1

2
·
(
V L
d1,d2(j) + V L

d∗1,d
∗
2
(j)
)
. (47)

We have V L
d1,d2

(1) = V L
d1,d2

(2), as implied by {1, 2} ⊆ ER(Gd1,d2). Moreover, V L
d∗1,d

∗
2
(j) = V L

d∗(j) =

M{1,2} for j ∈ {1, 2} as we proved in Lemma 7.1. Hence, Eq. (47) implies Ṽ L
d1,d2

(1) = Ṽ L
d1,d2

(2).

Using Eq. (46), we then establish Ṽ L
d1,d2

(1) = Ṽ L
d1,d2

(2) ≥ V L
d1,d2

(1), as desired. This completes
the proof.

E Omitted Proofs in Section 8

E.1 Proof of Theorem 8.1

Theorem 8.1. Given oracle AW1, in time polynomial in the bit size of uL and δ > 0, we can
learn a matrix ũL that achieves the same equivalences in Theorem 5.4 with probability at least
1− δ. The same holds for AW2 if uL is non-max-degenerate.

Proof. Notice that the only part of the approach where the ability of specifying an equilibrium
is needed is to prove Observation 4.1, Observation 4.2, and decide the termination of the binary
searches. With an upper bound of the input’s bit size given, we can efficiently terminate the
binary searches. It now suffices to show that every query toASSE used in proving Observation 4.1
and 4.2 can be replaced by a polynomial number of queries to oracles AW1 and AW2, whereby
the information we need can be learned with high probability. Once this is proven, the result
stated in the theorem follows readily.
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Specifically, consider oracle AW1, Assume that a strategy profile (x, j) is a basic SSE of
game (uL, ũF ). We now compute the number of queries needed to make AW1 output (x, j) at
least once with probability at least 1− δ. Denote the number of basic SSEs of game (uL, ũF ) to
be N . Actually, it suffices to query the oracle log(1/δ)/log(N/N−1) = O(N log(1/δ)) times. Indeed,
suppose K is the number of queries made. We have

1− (1− 1/N)K ≥ 1− δ ⇐⇒ K ≥ log

(
1

δ

)
/ log

(
N

N − 1

)
. (48)

In the induced games in proving Observation 4.1 and 4.2, N is bounded from above by the
number of leader’s pure actions, which is, respectively, m and m+ 1 in these two observations.

As for oracle AW2, Observation 4.1 and 4.2 can be easily achieved as Ij only has one element
for each follower action j in the case of non-max-degeneracy.
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